Numerical methods in differential equations 1

Problem 1. Numerical methods for approximate solution of the initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad t \in[a, b], \quad y(a)=y^{0} .
$$

Taking the step size h we construct a number sequence $\left\{y^{n}\right\}$, whose elements are treated as the approximations to the exact values $y\left(t_{n}\right)$: $y^{n} \approx y\left(t_{n}\right)$ at mesh points $t_{n}=a+n \cdot h, n=0,1,2, \ldots, N, N=\left[\frac{b-a}{h}\right]$. Examples of such constructions are given below.

1) the explicit Euler method: $y^{n+1}=y^{n}+h f\left(t_{n}, y^{n}\right), y^{0}=y(a)$;
2) the implicit Euler method: $y^{n+1}=y^{n}+h f\left(t_{n+1}, y^{n+1}\right), y^{0}=y(a)$;
3) the trapezoidal method: $y^{n+1}=y^{n}+\frac{h}{2}\left(f\left(t_{n}, y^{n}\right)+f\left(t_{n+1}, y^{n+1}\right)\right)$, $y^{0}=y(a)$;
4) the midpoint method: $y^{n+1}=y^{n-1}+2 h f\left(t_{n}, y^{n}\right)$, $y^{0}=y(a), y^{1}=y(a)+h f(a, y(a))$.

For each approximate method, we define the error of approximation

$$
e(h)=\max _{1 \leq n \leq N}\left|y\left(t_{n}\right)-y^{n}\right| .
$$

One of the main task is an analysis of the approximation error $e(h)$ of the numerical method. We say that the order or convergence rate of the method is $\alpha_{0}>0$, if

$$
|e(h)| \leq C \cdot h^{\alpha},
$$

for some constant $C>0$ and $\alpha_{0} \leq \alpha$ for any initial value problem. Use methods 1) - 4) to find an approximate solution to the following initial value problem

$$
y^{\prime}=y, \quad t \in[0,2], \quad y(0)=1 .
$$

In this case $y(t)=e^{t}$ is the exact solution.

1. Do numerical tests with Matlab for various step sizes, for example $h=0.5,0.2,0.1,0.05, \ldots$ or equivalently $n=4,10,20,40, \ldots$
2. Compare graphically the exact and approximate solutions.
3. For each method give an estimate of its convergence rate. This can be done as follows
a) choose two stepsizes, for example $h_{1}=0.01$ and $h_{2}=h_{1} / 2=0.005$,
b) compute the errors $e\left(h_{1}\right)$ and $e\left(h_{2}\right)$,
c) the ratio $r=e\left(h_{1}\right) / e\left(h_{2}\right)$ is approximately equal to 2^{α}, whence we determine α.
4. How does the convergence rate change when the initial values y^{0} in methods 1)-3) and y^{0} i y^{1} in method 4) are perturbed, for example let you consider the following examples
5. $y^{0}=y(a)+C \cdot h(C>0$ is some constant $)$, in methods 1$\left.)-3\right)$,
6. $y^{0}=y(a), y^{1}=y(a)+\frac{1}{2} h f(a, y(a))$, in method 4$)$.

Try to give an explanation of such a behaviour of methods 1)-4).
The Matlab programe should have the following or equivalent structure:

$$
\begin{aligned}
& \text { Input data: } \\
& a, b, t_{0}, y_{0}, f(t, y) \text {, } \\
& \text { an exact solution } y_{d}(t)
\end{aligned}
$$

> | Beginning of the loop: |
| :--- |
| for $n=[10,20,40, \ldots]$ |

$$
\begin{aligned}
& \mathrm{t}=\text { linspace }(a, b, n+1) \\
& \mathrm{h}=\frac{b-a}{n}
\end{aligned}
$$

> | Determining the vector of |
| :--- |
| the exact solution values: |
| $y_{d d}(k)=y_{d}\left(t_{k}\right), k=$ |
| $1,2, \ldots, n$ |

Determining the vector of
approximate solution
values:
$y_{a}(k)=\ldots, k=1,2, \ldots, n$

Collecting errors:
$\operatorname{er}(\mathrm{h})=\max \left|y_{a}(k)-y\left(t_{k}\right)\right|$

> Plotting the results:
> $\operatorname{plot}\left(t, y_{d d},{ }^{\prime} ., t, y_{a},,^{\prime}\right)$

End of the loop

> Analysis of the error: $\operatorname{er}(h) / \operatorname{er}\left(\frac{h}{2}\right)=\ldots$

Problem 2. The initial value problem

$$
y^{\prime}=-100 y+100 \cos t-\sin t, \quad t \in[0, \pi], \quad y(0)=1
$$

has an exact solution $y(t)=\cos t$. Do tests as in exercise 1 and in each case determine the range of the step size h, for which computations stabilize.

Basic numerical algorithms for the ordinary differential equations :

1. First order methods
1) the explicit Euler method: $y^{n+1}=y^{n}+h f\left(t_{n}, y^{n}\right), \quad y^{0}=y(a)$;
2) the implicit Euler method: $y^{n+1}=y^{n}+h f\left(t_{n+1}, y^{n+1}\right), y^{0}=y(a)$;
2. Second order methods
3) the trapezoidal method: $y^{n+1}=y^{n}+\frac{h}{2}\left(f\left(t_{n}, y^{n}\right)+f\left(t_{n+1}, y^{n+1}\right)\right), y^{0}=y(a)$;
4) the midpoint method: $y^{n+1}=y^{n-1}+2 h f\left(t_{n}, y^{n}\right)$,

$$
y^{0}=y(a), y^{1}=y(a)+h f(a, y(a)) .
$$

3. The Runge-Kutta's methods

3a. the second order method
step $y_{i} \rightarrow y_{i+1}$:

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) h \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1}\right) h \\
& y_{i+1}=y_{i}+k_{2}
\end{aligned}
$$

3b. the fourth order method
step $y_{i} \rightarrow y_{i+1}:$

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) h \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1}\right) h \\
& k_{3}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2}\right) h \\
& k_{4}=f\left(t_{i}+h, y_{i}+k_{3}\right) h \\
& y_{i+1}=y_{i}+\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}
\end{aligned}
$$

4. the second order Runge-Kutta method for the system of equations

$$
\begin{gathered}
\left\{\begin{array}{l}
x^{\prime}=f(t, x, y) \\
y^{\prime}=g(t, x, y)
\end{array}\right. \\
\text { step }\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]: \\
k_{1}=\left[\begin{array}{l}
k_{11} \\
k_{12}
\end{array}\right]=\left[\begin{array}{l}
f\left(t_{i}, x_{i}, y_{i}\right) h \\
g\left(t_{i}, x_{i}, y_{i}\right) h
\end{array}\right] \\
k_{2}=\left[\begin{array}{l}
k_{21} \\
k_{22}
\end{array}\right]=\left[\begin{array}{l}
f\left(t_{i}+\frac{1}{2} h, x_{i}+k_{11}, y_{i}+k_{12}\right) h \\
g\left(t_{i}+\frac{1}{2} h, x_{i}+k_{11}, y_{i}+k_{12}\right) h
\end{array}\right] \\
{\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]=\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{c}
k_{21} \\
k_{22}
\end{array}\right]}
\end{gathered}
$$

