
Numerical methods in differential equations 3

Solutions to the problems below should be prepared in the form of Matlab or Python codes
with attached flowcharts explaining your algorithms.

Problem 1. Use the shooting algorithm to approximate the solution of the following boundary
value problem with accuracy ϵ = 0.001 at the right end of the interval. The actual solution is
given for comparison to your result.

a) y′′ =
1

2
y3, 1 ≤ x ≤ 2, y(1) = −2

3
, y(2) = −1, y(x) = 2/(x− 4).

b) y′′ = y3 − yy′, 1 ≤ x ≤ 2, y(1) =
1

2
, y(2) =

1

3
, y(x) = 1/(x+ 1).

c) y′′ = 2y3 − 6y − 2x3, 1 ≤ x ≤ 2, y(1) = 2, y(2) =
5

2
, y(x) = x+

1

x
.

d) y′′ = −(y′)2 − y + lnx, 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln 2, y(x) = ln x.

For approximation of the corresponding initial value problems use the Runge-Kutta method of
order 2.

Problem 2. The maximum principle. Let Lh be an operator defined for finite sequences {Uj},
j = 0, 1, . . . , N by the formula

LhUj = −Uj+1 − 2Uj + Uj−1

h2
+ q(xj)Uj, j = 1, 2, . . . , N − 1

Show that if the sequence {Uj}, j = 0, 1, . . . , N is such that LhUj ≤ 0, (LhUj ≥ 0) j =
1, 2, . . . , N − 1 and q(x) ≥ 0, then

max
j

Uj = max{U0, UN , 0} (min
j

Uj = min{U0, UN , 0}).

Verify that observation in the case of the finite difference solution of the following problem

−u′′ + xu = 0

u(0) = 0, u(1) = 1.

Problem 3. Use the finite difference method to approximate the following linear boundary
value problem at the point of the uniform division a = x0 < x1 < x2 < · · · < xn = b. The
actual solution is given for comparison to your result.

a) y′′ = −4y′ + 4y, 0 ≤ x ≤ 1,

y(0) = 1, y(1) = e−2+2
√
2, y(x) = e(−2+2

√
2)x,

b) y′′ = −3y′ + 2y + 2x+ 3, 0 ≤ x ≤ 1,

y(0) = 2, y(1) = −4 + 5e−
3
2
+

√
17
2 , y(x) = −3 + 5e(−

3
2
+

√
17
2

)x − x,

c) − y′′ − (x+ 1)y′ + 2y = −(x2 + 3)ex, 0 ≤ x ≤ 1,

y(0) = −1, y(1) = 0, y(x) = (x− 1)ex,

d) − y′′(x) + (x2 + 1)y(x) = (π2 + x2 + 1) sin(πx), 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 0, y(x) = sin(πx).
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1. Plots the graphs of the exact solution yd and approximate solutions yp at the knots
{xi}0≤i≤n for n = 50, 100, 200, 400, 800.

2. Observing the error

error(h) = max
0≤i≤n

|yp,i − yd,i|

n = 50, 100, 200, 400, 800 try to determine the accuracy order of the method.

Problem 4. Use the Ritz-Galerkin method to approximate the solution to each of the following
boundary value problems. The actual solution yd(x) is given for comparison purposes.

1)

{
−y′′(x) + exy(x) = (π2 + ex) sin(πx)

y(0) = 0, y(1) = 0, yd(x) = sin(πx),

2)


−((x+ 2)y′)′ + (x2 + 1)y = − sin(πx)− x cos(πx)π − (x+ 2)

(2 cos(πx)π − x sin(πx)π2) + (x2 + 1)x sin(πx)

y(0) = 0, y(1) = 0, yd = x sin(πx)

3)

{
−y′′(x) + (x+ 1)y(x) = (π2 + x+ 1) sin(πx)

y(0) = 0, y(1) = 0, yd(x) = sin(πx),

4)

{
−((x+ 1)y′)′ + x2y = − cos(πx)π + (x+ 1) sin(πx)π2 + x2 sin(πx)

y(0) = 0, y(1) = 0, yd = sin(πx),

As test functions take the piecewise linear continuous functions. The space S1
0(∆) of such

functions can be described as follows: ∆ is a uniform partition of the interval [a, b], a = x0 <
x1 < · · · < xn < xn+1 = b, and the basis of S1

0(∆) consists of the hat functions ϕi(x) = ϕ(x−xi

h
),

i = 1, 2, . . . , n, where the mother function is defined as

ϕ(x) =

{
−|x|+ 1, −1 ≤ x ≤ 1

0, x ̸∈ [−1, 1].

1. Plots the graphs of the exact solution yd(x) and approximate solutions yp(x) for n =
50, 100, 200, 400, 800.

2. Observing the error

error2(h) =
(

b∫
a

(yd(x)− yp(x))
2dx

)1/2

n = 50, 100, 200, 400, 800 try to determine the accuracy order of the method.

Problem 5. Some approximation properties of the space S1
0(∆) (see the exercise above). Let

v(x) ∈ C[a, b], v(a) = v(b). We define the interpolant wh(x) = Ihv(x) ∈ S1
0(∆) of v(x) by the

relation

wh(xj) = v(xj), j = 0, 1, . . . , n

in other words

wh(x) =
n∑

j=1

v(xj)ϕj(x).
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Show that there exists a constant C such that for all Kj = [xj−1, xj]

a) ||Ihv − v||Kj
=

 xj∫
xj−1

(Ihv(x)− v(x))2dx


1/2

≤ Ch2

 xj∫
xj−1

v′′(x)2dx


1/2

.

b) ||(Ihv)′ − v′||Kj
=

 xj∫
xj−1

((Ihv)
′(x)− v′(x))2dx


1/2

≤ Ch

 xj∫
xj−1

v′′(x)2dx


1/2

.

(Hint : (Ihv)
′(x)− v′(x) =

1

h

xj∫
xj−1

v′(y)− v′(x)dy.)

Conclusion

||Ihv − v|| ≤ Ch2

 b∫
a

v′′(x)2dx

1/2

, ||(Ihv)′ − v′|| ≤ Ch

 b∫
a

v′′(x)2dx

1/2

.

Illustrate the result for v(x) = sin x, x ∈ [0, π] taking consecutively h = 2−4π, 2−5π, 2−6π, 2−7π, . . . .
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