
Lecture 1

I. The initial value problem for ordinary differential equations

{
y′ = f(t, y), t ∈ (a, b)
y(t0) = y0, t0 ∈ (a, b)

The most important questions are

1. Existence and uniqueness of solutions to the problem.
2. Continuous dependence on the data.
3. The interval of the existence of the solution.

The answers to the question 1 and 2: if f is regular, i. e. f ∈ C1([a, b]×R), then there exists
exactly one solution of the problem and it is continuous with respect to the data.

The explanation of 2:

Let’s consider the original and perturbed problems{
y′ = f(t, y)

y(t0) = y0

{
y′ = f(t, y, ϵ)

y(t0) = yϵ,0, yϵ = y(t, ϵ)

Then a continuous dependence means that

∀δ > 0 ∃ϵ0 > 0 ∀y0,ϵ ∀ 0 < ϵ < ϵ0 (|y0 − yϵ,0| < ϵ0) ⇒ |y(t)− yϵ(t)| < δ, t ∈ (a, b)

The remark to the question 3:

Example 1. Let’s consider the following problem{
y′ = y2

y(0) = c

here f(t, y) = y2 and y(t) = c
1−ct

, t ∈ (0, 1/c) is a solution. We see that the solution exists on
the interval, whose length is not fixed but strongly depends on initial data c. Generally,
determining the length of the interval on which solution exists is a very difficult task.



Remark. 1. There are no separate numerical methods for systems of the differential
equations. All the above considerations concern also to the systems.

y′1 = f1(t, y1, y2, . . . , ym)

y′2 = f2(t, y1, y2, . . . , ym)

. . .

y′m = fm(t, y1, y2, . . . , ym)

y(t0) = y0,

which we write in the vector form differential equation

y′(t) = f(t, y), y(t0) = y0,

where

y(t) = (y1(t), y2(t), . . . , ym(t)), y0 = (y01, y
0
2, . . . , y

0
m)

f(t, y) = (f1(t, y1, y2, . . . , ym), f2(t, y1, y2, . . . , ym) . . . , fm(t, y1, y2, . . . , ym))

Example 2. There are no separate numerical methods for higher order differential equations.
In such a case we transform the equation of higher order to the system of the first order
differential equation, as in the following example.

y′′ = f(t, y, y′), y(t0) = y1, y′(t0) = y2,

We introduce u1(t) = y(t), u2(t) = y′(t), u0
1 = y1, u0

2 = y2. Then we get the system of the
first order differential equations{

u′
1 = u2,

u′
2 = f(t, u1, u2), u(t0) = u0

II. Approximate solution

1. Discretization of the problem.

We begin with a division: a = t0 < t1 < · · · < tn = b, sequence {ti} is called a grid, mesh
points, knots or nodes. We usually use the equispaced nodes (a uniform grid), where
h = ti+1 − ti for every 0 ≤ i ≤ n− 1 but this is not a rule. The parameter h is called a grid
size or a step size of the method.

The aim of any approximate method is a construction of a sequence of the values {yi} which
can be considered as approximations to the exact values {y(ti)} of the solution, yi ≈ y(ti).

2. The simplest constructions of yi are the following

a. the explicit Euler method

y0 = y(t0), yi+1 = yi + hf(ti, yi).

b. the implicit Euler method

y0 = y(t0), yi+1 = yi + hf(ti+1, yi+1).



To provide a motivation for the form of the explicit method, let us consider the sequence of
exact values {y(ti)}. We observe that

y(ti+1)− y(ti)− hf(ti, y(ti)) = y(ti + h)− y(ti)− hy′(ti) = r(h),

where r(h) is the remainder in the Taylor formula, it can be expressed as r(h) = 1
2
y′′(ξ)h2.

Hence, it follows that there exists a constant c > 0 (independent of h!) such that |r(h)| ≤ ch2.
Since the parameter h is small (h → 0), the remainder r(h) is also small. Finally we get a
conclusion: the sequence {yi(t)} almost exactly satisfies the explicit Euler algorithm
yi+1 − yi − hf(ti, yi) = 0, the error, r(h) is small. Whence we expect that terms yi are close to
their respective terms y(ti), i = 1, 2, . . . , n.

More general discrete schemes :

yk+1 = am−1yk + am−2yk−1 + · · ·+ a0yk+1−m + hF (tk, h, yk+1, yk, . . . , yk+1−m)

with given initial data y0, y1, . . . , ym−1.

Such schemes are called the difference schemes or m-step methods.

Explicit and implicit methods:

When yk+1 is absent on the right hand side, the scheme is called explicit, otherwise it is
implicit. Let us note that the explicit and implicit Euler methods are one-step methods.

2. Basic properties of approximate algorithms

2a. The most important property of the method is its consistency with the differential
problem.

Let’s consider the exact values yi(t) and their approximations yi. Since yi ≈ y(ti), we expect
that for the local error of the method ekl (h) we have

ekl (h) = y(tk+1)− am−1y(tk)− am−2y(tk−1)− · · · − a0y(tk+1−m)

−hF (tk, h, y(tk+1), y(tk), . . . , y(tk+1−m)) ≈ 0

(compare the definition of yi.)
We say that the difference scheme is consistent with the differential equation, when

max
k

|ekl (h)/h| → 0, as h → 0.

The measure of the consistency order.

In real problems, we usuallly get the error estimates in the following form

max
k

|ekl (h)| ≤ c · hp+1, for some p ∈ [1,∞).

In such a case we say that the local (truncated) error of the method is of the order p+ 1.

2b. Another important property of the method is its stability. This notion corresponds to
the continuous behavior of the solution, in other words if the initial data {y0, y1, . . . , ym−1}
determining the whole approximate solution {yk}0≤k≤n are replaced with a bit perturbed data
{ȳ0, ȳ1, . . . , ȳm−1}, we obtain another a bit perturbed approximate solution {ȳk}0≤k≤n,
yk ≈ ȳk. In such a case the approximate solution reflects main properties of the exact solution
such as monotonicty or boundness.

Example 3.

y′ = −my (m > 0), y(0) = 1,



The exact solution is y(t) = e−mt.
Applying the explicit Euler method we have

yk+1 = yk + hf(tk, yk), y0 = 1

yk+1 = yk + h(−myk) = (1−mh)yk, y0 = 1

Hence we obtain the approximate solution yk = y0(1−mh)k, 0 ≤ k ≤ n. In this case the
approximate solution reflects the properties of the exact solution if and only if

0 < 1−mh < 1

which gives a bound for h

0 < h < 1/m,

The interval h ∈ (0, 1/m) is called the interval of stability.

Example 4. We consider the same equation, but now we apply the implicit Euler method,
which results in the following

yk+1 = yk + h(−myk+1)

yk+1 =
1

1 +mh
yk, y0 = 1.

Hence, formula yk = y0
(

1
1+mh

)k, 0 ≤ k ≤ n gives the approximate solution. We see that the
approximate solution reflects the properties of the exact solution irrespective of the value of
the parameter h.

Conclusion. We say that the stability domain of the explicit Euler method is 0 < h < 1/m
and of the implicit one is 0 < h < ∞.

Remark. Usually the implicit methods are more stable than the explicit ones.

Example 5a. Let us consider{
y′(t) = 5y(t)

y(0) = 1

The solution of the problem is y(t) = e5t. Applying the backwad implicit Euler method we get
the approximate solution

y0 = 1, yn =
1

(1− 5h)n
.

Note that for h > 2/5 the approximate solution tends to zero, while the exact solution goes to
∞.

Example 5. A system of the differential equations
y′1 = a y1(t) + b y2(t)

y′2 = c y1(t) + d y2(t)

y1(0) = y01, y2(0) = y02



We write it in a concise vector form: y⃗ ′ = Ay⃗(t), y⃗(0) = (y01, y
0
2), where

A =

[
a, b
c, d

]
, y⃗(t) = (y1(t), y2(t));

Further we simply write y instead of y⃗. The explicit Euler method gives

yk+1 = yk + hAyk = (I + hA)yk

Hence, we obtain

yk = (I + hA)ky0, k = 1, 2, 3, . . . , n.

To calculate (I + hA)k we use the Jordan form of the matrix A. For example, let

A = M−1JM,

where J is the Jordan form of A and M is a similarity matrix. It is known that the matrix J
has one of the following forms

J =



[
λ1 0

0 λ2

]
,

[
λ 1

0 λ

]
[
α −β

β α

]
λ = α± βi

(1)

where λ1, λ2 and λ are the eigenvalues of matrix A. Let’s consider the first case with
λ1, λ2 < 0. Then

(I + hA)k = M−1(I + hJ)kM = M−1

[
(1 + hλ1)

k 0
0 (1 + hλ2)

k

]
M

As a conclusion we obtain{
if |1 + hλi| > 1, for some i, then the method is unstable,
if |1 + hλi| < 1, for i = 1, 2, then the method is stable,

Finally, the stability domain of the approximate method is h ∈ (0, 2/max(|λ1|, |λ2|)).

Example 6. Stability in a case of a general method

yk+1 = am−1yk + am−2yk−1 + · · ·+ a0yk+1−m + hF (tk, h, yk+1, yk, . . . , yk+1−m)

We first consider a test problem{
y′ = 0

y0 = α



In this case we have f(t, y) ≡ 0, which gives F ≡ 0 and the exact solution is y(t) = α.
Applying our algorithm we get a recurrence equation

(2) yk+1 =
m−1∑
j=0

ajyk+1−m+j

to which we assign the characteristic polynomial

ρ(z) = zm − am−1z
m−1 − am−2z

m−2 − · · · − a1z − a0.

Let λ1, λ2, . . . , λm be the roots of the equation ρ(z) = 0.

Since we have

y0 = α, y1 = α, . . . , ym−1 = α,

we also expect that ym = α. However, it follows from the algorithm that

ym =
m−1∑
j=0

ajyj, or α =
m−1∑
j=0

ajα

which gives

(3) 1 = am−1 + am−2 + · · ·+ a1 + a0

Conclusion

If the method is consistent with the equation, then (3) holds. In other words:

λ1 = 1 is a solution of the equation ρ(z) = 0.

Now, it is known that the general solution of the recurrence equation (2) has the form

yk =
m∑
i=1

ciλ
k
i = c1 · 1 +

m∑
i=2

ciλ
k
i

Since in our case yk = α, k = 0, 1, 2, . . . , we conclude that

c1 = α, c2 = c3 = · · · = cm = 0.

However, so far we did not take into account the process of the round-off errors in the
computer calculations. In such a case we have to note that the real approximate solution is of
the form

yk = α +
m∑
i=2

ciλ
k
i .

Therefore we note that

1. if all roots of the characteristics equation ρ(z) = 0 satisfy the condition |λi| < 1,
i = 2, 3, . . . ,m, then∣∣∣∣∣

m∑
i=2

ciλ
k
i

∣∣∣∣∣ → 0,

as k → ∞;



2. if |λi0| ≥ 1, for some 2 ≤ i0 ≤ m, then∣∣∣∣∣
m∑
i=2

ciλ
k
i

∣∣∣∣∣ ̸→ 0,

Hence it follows that in the second case the scheme cannot produce the stable solution of the
problem.
Although it seems that we have considered only an approximation in the very particular case,
for the initial value problem

y′ = 0, y(0) = α,

the stability characteristic remains the same also in a more general situation, when f(t, y) is
not identically zero. This is due the fact that the solution to the homogeneous equation is
embeded in the solution to any equation.

Example 7. The initial problem as in example 3. To obtain an approximate solution, we
apply the following scheme

yk+1 = −4yk + 5yk−1 + h(4f(tk, yk) + 2f(tk−1, yk−1).

Now, a1 = −4, a0 = 5, so ρ(z) = z2 + 4z − 5.
The characteristic equation ρ(z) = 0 has solutions λ1 = 1, λ2 = 5. Because λ2 > 1 we
conclude that this scheme is unstable.


