Lecture 2
I. The error estimate for the Euler explicit method applied to the initial value problem

Exact problem
(1) $\left\{\begin{array}{l}y^{\prime}=f(t, y) \\ y\left(t_{0}\right)=y_{0}\end{array}\right.$

Assumptions:

1. the function $f(t, y)$ is regular (i.e. it has continuous derivatives $\left.f_{t}(t, y), f_{y}(t, y), f_{t t}(t, y), f_{t y}(t, y), f_{y y}(t, y)\right)$, in particular it satisfies the Lipschitz condition

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

for all t, y_{1}, y_{2}, where $L>0$ is some constant.
2. let

$$
M=\max _{(t, y)}\left\{|f(t, y)|,\left|f_{t}(t, y)\right|,\left|f_{x}(t, y)\right|,\left|f_{t t}(t, y)\right|,\left|f_{x t}(t, y)\right|,\left|f_{x x}(t, y)\right|\right\}
$$

We define the approximate problem as follows:
Find a series of approximate values using the explicit Euler algorithm

$$
y_{0}, \quad y_{i+1}=y_{i}+h f\left(t_{i}, y_{i}\right), i=0,1,2, \ldots, n-1
$$

The global error of approximation is defined as follows

$$
e(h)=\max _{1 \leq i \leq n}\left|y\left(t_{i}\right)-y_{i}\right| .
$$

To analyze $e(h)$ we consider the sequence of the errors at the individual grid points

$$
e_{i}=y\left(t_{i}\right)-y_{i}, \quad i=1,2, \ldots, n,
$$

Then by Taylor's formula* (up to the first term) we get
(2) $y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+R(h)$,
where $|R(h)| \leq C h^{2}$,

$$
\begin{aligned}
& C=\frac{1}{2} \max _{t_{i} \leq t \leq t_{i+1}}\left|y^{\prime \prime}(t)\right|=\frac{1}{2} \max _{t_{i} \leq t \leq t_{i+1}}\left|f_{t}+f \cdot f_{y}\right| \leq \frac{1}{2}\left(M+M^{2}\right) \leq M^{2} \\
& y^{\prime \prime}=\left(y^{\prime}\right)^{\prime}=\frac{d}{d t} f(t, y)=f_{t}(t, y)+y^{\prime} f_{y}(t, y)=f_{t}+f \cdot f_{y}
\end{aligned}
$$

It follows from the differential equations that $y^{\prime}\left(t_{i}\right)=f\left(t_{i}, y_{i}\right)$, therefore
(3) $y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i}, y_{i}\right)+R(h)$

* - Taylor's formula up to $n-t h$ term has a form:
$y(t+h)=y(t)+\frac{h}{1!} y^{\prime}(t)+\frac{h^{2}}{2!} y^{\prime \prime}(t)+\cdots+\frac{h^{n}}{n!} y^{(n)}(t)+R_{n}(h)$,
where $R_{n}(h)$ is the remainder, for which we have an estimate $\mid R_{n}(h) \leq C h^{n+1}$.
Since
(4) $y_{i+1}=y_{i}+h f\left(t_{i}, y_{i}\right)$,
it follows from (??) and (??) that

$$
\begin{equation*}
e_{i+1}=y\left(t_{i+1}\right)-y_{i+1}=\left(y\left(t_{i}\right)-y_{i}\right)+h\left(f\left(t_{i}, y\left(t_{i}\right)\right)-f\left(t_{i}, y_{i}\right)\right)+R(h) . \tag{5}
\end{equation*}
$$

Since f satisfies the Lipschitz condition

$$
\left|f\left(t_{i}, y\left(t_{i}\right)\right)-f\left(t_{i}, y_{i}\right)\right| \leq L\left|y\left(t_{i}\right)-y_{i}\right|,
$$

from (??) we get inequality
(6) $\left|e_{i+1}\right| \leq(1+L h)\left|e_{i}\right|+C h^{2}, \quad i=0,1,2, \ldots, n$,
where $C>0$ is some constant independent of h. We discuss this inequality beginning with the following auxilliary lemma

Lemma 1.

Let the sequence $\left\{e_{i}\right\}$ satisfy

$$
\begin{equation*}
\left|e_{i+1}\right| \leq A\left|e_{i}\right|+B, \quad i=0,1,2, \ldots \tag{7}
\end{equation*}
$$

where $A, B>0$ are some constants. Then for each e_{i} we have the following explicit estimate

$$
\begin{equation*}
\left|e_{i}\right| \leq A^{i}\left|e_{0}\right|+B \frac{A^{i}-1}{A-1}, \quad i=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Proof of lemma. The proof is by induction. First we observe that

$$
\left|e_{1}\right| \leq A\left|e_{0}\right|+B
$$

Assuming (??) for i, for $i+1$ we get inequality

$$
\left|e_{i+1}\right| \leq A\left|e_{i}\right|+B \leq A\left(A^{i}\left|e_{0}\right|+B \frac{A^{i}-1}{A-1}\right)+B=A^{i+1}\left|e_{0}\right|+B \frac{A^{i}-1}{A-1}
$$

An inductive argument ends the proof.
Now we apply lemma 1 to our sequence, where $e_{0}=0, A=1+L h$ and $B=C h^{2}$. Then we get

$$
e_{i} \leq \frac{(1+h L)^{i}-1}{h L} C h^{2} \leq \frac{C}{L}(1+h L)^{n} h, \quad 0 \leq i \leq n .
$$

Since

$$
t_{0}<t_{1}<\cdots<t_{n}=T, \quad n h=T-t_{0}
$$

we have

$$
(1+h L)^{n}=\left[(1+h L)^{\frac{1}{h L}}\right]^{n h L} \leq \exp \left(\left(T-t_{0}\right) L\right)
$$

The last inequality follows from the known inequality $(1+x)^{\frac{1}{x}} \leq e$ for $x>0$. Finally we get the estimate of the global error for the explicit Euler method
(9) $\quad e(h)=\max _{0 \leq i \leq n}\left|e_{i}(h)\right| \leq \frac{C}{L} e^{\left(T-t_{0}\right) L} h=C_{1} h$.

Let us compare the global error (??) for the explicit Euler method with the local error. For the latter error we have an estimate
(10) $e_{l}^{i}(h)=\left|y\left(t_{i+1}\right)-y\left(t_{i}\right)-h f\left(t_{i}, y\left(t_{i}\right)\right)\right|=\left|y\left(t_{i+1}\right)-y\left(t_{i}\right)-h y^{\prime}\left(t_{i}\right)\right|=|r(h)|$ where $r(h)$ is the remainder in Taylor's formula, which satisfies the inequality $|r(h)| \leq C h^{2}$. Hence it follows that

$$
e_{l}(h)=\max _{0 \leq i \leq n}\left(e_{l}^{i}(h)\right) \leq C h^{2}
$$

Generally, for difference methods between local and global errors we usually have the following relation
(11) $e_{l}(h) \leq c h^{p+1}$ and $e(h) \leq c h^{p}$,
where $p>0$ is the order of the method.
III Practical methods of higher order - the Runge-Kutta's methods

1. The method of the second order

$$
\begin{aligned}
& y_{i+1}: \quad k_{1}=f\left(t_{i}, y_{i}\right) h \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1}\right) h \\
& y_{i+1}=y_{i}+k_{2}
\end{aligned}
$$

2. The method of the fourth order

$$
\begin{aligned}
& y_{i+1}: \quad k_{1}=f\left(t_{i}, y_{i}\right) h \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1}\right) h
\end{aligned}
$$

$$
\begin{aligned}
& k_{3}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2}\right) h \\
& k_{4}=f\left(t_{i}+h, y_{i}+k_{3}\right) h \\
& y_{i+1}=y_{i}+\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}
\end{aligned}
$$

Example 1. The second order Runge-Kutta method for the system of equations

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x, y) \\
y^{\prime}=g(t, x, y)
\end{array}\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]: k_{1}=\left[\begin{array}{l}
k_{11} \\
k_{12}
\end{array}\right]=\left[\begin{array}{l}
f\left(t_{i}, x_{i}, y_{i}\right) h \\
g\left(t_{i}, x_{i}, y_{i}\right) h
\end{array}\right]} \\
& k_{2}=\left[\begin{array}{l}
k_{21} \\
k_{22}
\end{array}\right]=\left[\begin{array}{l}
f\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} k_{11}, y_{i}+\frac{1}{2} k_{12}\right) h \\
g\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} k_{11}, y_{i}+\frac{1}{2} k_{12}\right) h
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]=\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
k_{21} \\
k_{22}
\end{array}\right]}
\end{aligned}
$$

A practical guide for verification of the order $p>0$ in (??) of the convergence rate of the algorithm.

1. Asume that $e(h) \approx C h^{p}$.
2. Let choose a step h_{0} for example $h_{0}=0.05$ and perform numerical tests for a number of step sizes of h, for example $h=h_{0}, h_{0} / 2, h_{0} / 4, \ldots, h_{0} / 2^{5}$.
3. For each value of h, determine errors: $e\left(h_{0}\right), e\left(h_{0} / 2\right), e\left(h_{0} / 4\right), \ldots e\left(h_{0} / 2^{5}\right)$ of the approximation of the exact solution $y(t)$ by an approximate solution y_{h}.
4. If in point 3 . the exact solution $y(t)$ is not available, you can take instead the approximate solution y_{h} obtained for the last value of step h. 5. It follows from our assumption that

$$
\begin{aligned}
& e\left(h_{0}\right) \approx C h_{0}^{p}, \quad e\left(h_{0} / 2\right) \approx C h_{0}^{p} 2^{-p}, \quad e\left(h_{0} / 4\right) \approx C 2^{-2 p} h_{0}^{p}, \ldots \\
& e\left(h_{0} / 2^{k}\right) \approx C 2^{-k p} h_{0}^{p},
\end{aligned}
$$

So we may expect that

$$
e\left(h_{0} / 2^{i}\right) / e\left(h_{0} / 2^{i+1}\right) \approx 2^{p}, i=0,1,2, \ldots,
$$

which is verifiable by computation. Hence we retrieve the value of p. 6. To illustrate results you can draw the points

$$
P_{k}=\left(-\ln \left(h_{0} / 2^{k}\right),-\ln \left(e\left(h_{0} / 2^{k}\right)\right) .\right.
$$

Since

$$
-\ln (e(h)) \approx p \ln (-h)+\ln (-C)
$$

we expect that points P_{k} are arranged along the line $y=p \cdot x+b$. The coefficients p and b can be retrieved by using a Matlab command 'polyfit'.

