Lecture 2b
Slope field for the system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=f(x, y) \tag{1}\\
y^{\prime}=g(x, y)
\end{array}\right.
$$

Vector field $\vec{V}(x, y)=[f(x, y), g(x, y)],(x, y) \in R^{2}$ is called the slope field for (1). To draw it we first normalize it which results in

$$
\vec{V}(x, y)=\frac{1}{\sqrt{f(x, y)^{2}+g(x, y)^{2}}}[f(x, y), g(x, y)] .
$$

To obtain a final picture we can use a Matlab command 'quiver'.
Example 1. Let us consider equation $z^{\prime \prime}+4 z=0$. We introduce the auxilliary functions $x=z, y=z^{\prime}$ and obtain the system of equations
(2) $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=-4 x\end{array}\right.$
or in the matrix form

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

For the initial values $x(0)=1 / 2, y(0)=0$ we get the exact solution $x(t)=1 / 2 \cos (2 t), y(t)=-\sin (2 t)$. The solution and the slope field are demonstrated in the picture below.

II. Stiffness in differential problems

Example 2.

$\left\{\begin{array}{l}y^{\prime}=-100(y-\cos t)-\sin t \\ y(0)=1\end{array}\right.$, the exact solution is a function $y(t)=\cos t$
The general solution of the differential equation is

$$
y(t)=\cos t+C e^{-100 t}
$$

Any such a solution is rapidly shooting towards the curve cost. Applying the explicit method for obtaining the approximate solution we see that it reflects rather the general solution than the particular one, $\cos t$. However this requires the mesh size h satisfying the inequality $|1-100 h|<1$ (compare with equation $y^{\prime}=-100 y$), which gives $h<\frac{2}{100}$.

We observe a similar phenomenon for the system of equations

$$
\left\{\begin{array}{l}
x^{\prime}=998 x+1998 y \\
y^{\prime}=-999 x-1999 y
\end{array}\right.
$$

with a solution $x(t)=-e^{-1000 t}+2 e^{-t}, y(t)=e^{-1000 t}-e^{-t}$. In the solution we note the disturbing term which can be neglected for not too small t^{\prime} s, but the Euler's explicit method reflects rather the full solution. However this requires the mesh size h satisfying $|1-1000 h|<1$, which gives $h<\frac{2}{1000}$.
III. Approximate solution of the boundary value problem for the second order differential equation
First, let us compare the initial value problem with the corresponding boundary value one.
(1) $\left\{\begin{array}{l}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \\ y(a)=\alpha, y^{\prime}(a)=\beta\end{array}\right.$
(2) $\left\{\begin{array}{l}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \\ y(a)=\alpha, \quad y(b)=\beta\end{array}\right.$

The problem (1) has always a unique solution. In contrast to (1), the problem (2) sometimes has no solution or sometimes has an infinite number of solutions.

Example 3.

$\left\{\begin{array}{l}y^{\prime \prime}=-y \\ y(0)=0, \quad y(\pi)=1\end{array}\right.$
the general solution of this equation is $y(t)=A \cos t+B \sin t$.
Then we have $y(0)=A \cos 0+B \sin 0=A, y(\pi)=-A$. Thus the boundary condition causes that there are no A, B such that $y(t)$ would satisfy this condition. Therefore this boundary problem has no solutions.

Example 4.

$\left\{\begin{array}{l}y^{\prime \prime}=-y \\ y(0)=0, \quad y(\pi)=0\end{array}\right.$
the general solution of the equation is $y(t)=A \cos t+B \sin t$
Now $y(t)=B \sin t$, for any $B \in R$ is a solution of the problem. So the problem has a infinitly many solutions.
Examples of the boundary value problems comes frequently from the technical problems.

Example 5. A common problem in statics concerns the deflection of the elastic beam subjected to uniform loading, while the ends of the beam are fixed

$$
\left\{\begin{array}{l}
y^{\prime \prime}=\frac{S}{E I} y+\frac{q x}{2 E I}(x-l) \\
y(a)=0, \quad y(b)=0
\end{array}\right.
$$

l is the length of the beam, q is the intensity of the uniform loading, $E(x)$ is a modulus of the elasticity at the point x, S is a stress at the ends of the beam, $I(x)$ is the central moment of inertia.

Example 6. The general form of the equations, which are known that the boundary value problem has a unique solution is as follows

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=f(x), \\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right. \\
p(x) \geq p_{0}>0, \quad q(x) \geq 0
\end{array}\right\}
$$

The shooting method for the approximate solution of the boundary problem
(3) $\left\{\begin{array}{l}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \\ y(a)=\alpha, \quad y(b)=\beta\end{array}\right.$

We assume the problem (3) has a unique solution.
We will consider an auxilliary initial value problem
(4) $\left\{\begin{array}{l}y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \\ y(a)=\alpha, y^{\prime}(a)=p\end{array}\right.$
where p is a parameter. The solution of (4) is denoted by $y(t ; p)$.

The construction of the approximate solution. First we find experimentally two parameters p_{0}^{0}, p_{1}^{0} such that

$$
y\left(b ; p_{0}^{0}\right)<\beta, \quad y\left(b ; p_{1}^{0}\right) \geq \beta
$$

Let us assume $p_{0}^{0}<p_{1}^{0}$. We are looking for a \bar{p} such that $y(b, \bar{p})=\beta$ and $p_{0}^{0} \leq \bar{p} \leq p_{1}^{0}$.
2. Let

$$
c=\frac{1}{2}\left(p_{0}^{0}+p_{1}^{0}\right) .
$$

We define new parameters p_{0}^{1} and p_{1}^{1} in the following way

$$
\begin{cases}p_{0}^{1}=c, \quad p_{1}^{1}=p_{1}^{0}, & \text { if } y(b ; c)<\beta \\ p_{0}^{1}=p_{0}^{0}, \quad p_{1}^{1}=c, & \text { if } y(b ; c)>\beta\end{cases}
$$

3. at the n-th level we have p_{0}^{n}, p_{1}^{n}, passing to the $n+1$-th level we take

$$
\begin{cases}p_{0}^{n+1}=c, \quad p_{1}^{n+1}=p_{1}^{n}, & \text { if } y(b ; c)<\beta \\ p_{0}^{n+1}=p_{0}^{n}, \quad p_{1}^{n+1}=c, & \text { if } y(b ; c)>\beta\end{cases}
$$

Thus we have constructed the sequences $\left\{p_{0}^{n}\right\}$ and $\left\{p_{1}^{n}\right\}$, for which we have

1. $\left|p_{1}^{n+1}-p_{0}^{n+1}\right|=\frac{1}{2}\left|p_{1}^{n}-p_{0}^{n}\right|$
2. $p_{0}^{0} \leq p_{0}^{n} \leq p_{0}^{n+1} \leq \cdots \leq p_{1}^{n+1} \leq p_{1}^{n} \leq p_{1}^{0}$

From 1. it follows that

$$
\left|p_{1}^{n}-p_{0}^{n}\right|=\frac{1}{2^{n}}\left|p_{1}^{0}-p_{0}^{0}\right|=\frac{1}{2^{n}} d
$$

Hence there exists p^{*} such that

$$
\lim p_{0}^{n}=p^{*}=\lim p_{1}^{n} .
$$

We note that $y\left(t ; p^{*}\right)$ is the exact solution. As an approximate solution at the n-th step we take $y(t ; c)$, where $c=\left(p_{0}^{n}+p_{1}^{n}\right) / 2$.

Remark. In the numerical solution instead of the exact solution $y(x ; c)$
we have to operate with its approximation usually obtained by a Runge-Kutta type method.

