
Lecture 2b

Slope field for the system of differential equations

(1)
{

x′ = f(x, y)
y′ = g(x, y)

Vector field V⃗ (x, y) = [f(x, y), g(x, y)], (x, y) ∈ R2 is called the slope field
for (1). To draw it we first normalize it which results in

V⃗ (x, y) =
1√

f(x, y)2 + g(x, y)2
[f(x, y), g(x, y)].

To obtain a final picture we can use a Matlab command ’quiver’.

Example 1. Let us consider equation z′′ + 4z = 0. We introduce the
auxilliary functions x = z, y = z′ and obtain the system of equations

(2)
{

x′ = y
y′ = −4x

or in the matrix form[
x′

y′

]
=

[
0 1
−4 0

] [
x
y

]
For the initial values x(0) = 1/2, y(0) = 0 we get the exact solution
x(t) = 1/2 cos(2t), y(t) = − sin(2t). The solution and the slope field are
demonstrated in the picture below.
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II. Stiffness in differential problems .



Example 2.{
y′ = −100(y − cos t)− sin t

y(0) = 1
, the exact solution is a function y(t) = cos t

The general solution of the differential equation is

y(t) = cos t+ Ce−100t

Any such a solution is rapidly shooting towards the curve cos t. Applying
the explicit method for obtaining the approximate solution we see that it
reflects rather the general solution than the particular one, cos t. However
this requires the mesh size h satisfying the inequality |1− 100h| < 1
(compare with equation y′ = −100y), which gives h < 2

100
.

0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

2
cos(t)

cos(t)+exp(-100*t)

We observe a similar phenomenon for the system of equations{
x′ = 998x+ 1998y

y′ = −999x− 1999y

with a solution x(t) = −e−1000t + 2e−t, y(t) = e−1000t − e−t. In the solution
we note the disturbing term which can be neglected for not too small t′s,
but the Euler’s explicit method reflects rather the full solution. However
this requires the mesh size h satisfying |1− 1000h| < 1, which gives
h < 2

1000
.



III. Approximate solution of the boundary value problem for
the second order differential equation

First, let us compare the initial value problem with the corresponding
boundary value one.

(1)

{
y′′ = f(t, y, y′)

y(a) = α, y′(a) = β

(2)

{
y′′ = f(t, y, y′)

y(a) = α, y(b) = β

The problem (1) has always a unique solution. In contrast to (1), the
problem (2) sometimes has no solution or sometimes has an infinite number
of solutions.

Example 3.{
y′′ = −y

y(0) = 0, y(π) = 1

the general solution of this equation is y(t) = A cos t+B sin t.

Then we have y(0) = A cos 0 +B sin 0 = A, y(π) = −A. Thus the boundary
condition causes that there are no A, B such that y(t) would satisfy this
condition. Therefore this boundary problem has no solutions.

Example 4.{
y′′ = −y

y(0) = 0, y(π) = 0

the general solution of the equation is y(t) = A cos t+B sin t

Now y(t) = B sin t, for any B ∈ R is a solution of the problem. So the
problem has a infinitly many solutions.

Examples of the boundary value problems comes frequently from the
technical problems.



Example 5. A common problem in statics concerns the deflection of the
elastic beam subjected to uniform loading, while the ends of the beam are
fixed {

y′′ = S
EI

y + qx
2EI

(x− l)

y(a) = 0, y(b) = 0

l is the length of the beam, q is the intensity of the uniform loading, E(x) is
a modulus of the elasticity at the point x, S is a stress at the ends of the
beam, I(x) is the central moment of inertia.

Example 6. The general form of the equations, which are known that the
boundary value problem has a unique solution is as follows

{
−(p(x)y′)′ + q(x)y = f(x),

y(a) = α, y(b) = β.

p(x) ≥ p0 > 0, q(x) ≥ 0

p(x) ∈ C1[a, b], q(x) ∈ C[a, b]

The shooting method for the approximate solution of the boundary problem

{
y′′ = f(t, y, y′)

y(a) = α, y(b) = β
(3)

We assume the problem (3) has a unique solution.

We will consider an auxilliary initial value problem

(4)

{
y′′ = f(t, y, y′)

y(a) = α, y′(a) = p

where p is a parameter. The solution of (4) is denoted by y(t; p).



The construction of the approximate solution. First we find experimentally
two parameters p00, p

0
1 such that

y(b; p00) < β, y(b; p01) ≥ β
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Let us assume p00 < p01. We are looking for a p̄ such that y(b, p̄) = β and
p00 ≤ p̄ ≤ p01.

2. Let

c =
1

2
(p00 + p01).

We define new parameters p10 and p
1
1 in the following way{

p10 = c, p11 = p01, if y(b; c) < β

p10 = p00, p11 = c, if y(b; c) > β

3. at the n-th level we have pn0 , p
n
1 , passing to the n+ 1-th level we take{

pn+1
0 = c, pn+1

1 = pn1 , if y(b; c) < β

pn+1
0 = pn0 , pn+1

1 = c, if y(b; c) > β

Thus we have constructed the sequences {pn0} and {pn1}, for which we have

1. |pn+1
1 − pn+1

0 | = 1

2
|pn1 − pn0 |

2. p00 ≤ pn0 ≤ pn+1
0 ≤ · · · ≤ pn+1

1 ≤ pn1 ≤ p01



From 1. it follows that

|pn1 − pn0 | =
1

2n
|p01 − p00| =

1

2n
d.

Hence there exists p∗ such that

lim pn0 = p∗ = lim pn1 .

We note that y(t; p∗) is the exact solution. As an approximate solution at
the n-th step we take y(t; c), where c = (pn0 + pn1 )/2.

Remark. In the numerical solution instead of the exact solution y(x; c)
we have to operate with its approximation usually obtained by a Runge-Kutta type
method.


