Lecture 3

Topics

- 1. Determining periodic solutions
- 2. Finite difference method for the approximate solution of boundary value problems for second order differential equations

Determining the periodic solutions.

Let us consider the system of differential equations

(1)
$$\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$$

where a pair of functions $(x(t), y(t)), t \in \mathbb{R}$ is a solution. We assume that the functions f i g are regular. Under these assumptions any initial value problem $(x(0) = x_0, y(0) = y_0)$ for the system (1) has a unique solution. Hence it follows that the graphs of two solutions either concide or are disjoint.

Let AB be a segment in the plane. For any point $S \in AB$ (the start point) we construct a solution to the system such that (x(0), y(0)) = S.

We continue this construction until the solution reaches the segment once more. The point, where the solution crosses the segment is denoted by E (the end point).

If we are able to construct two solutions with the start points S_1, S_2 and the end points E_1, E_2 respectively in the order as in the picture below, then there exists a solution with a start point $S \in AB$, whose end point E = S. This solution is a closed curve and consequently it is a sought periodic solutions, i.e. there exists T > 0 such that x(t+T) = x(t), y(t+T) = y(t) for $t \in \mathbb{R}$.

Example. Let you detect experimentally a periodic solution to the second order equation $x'' + x - \operatorname{sign}(x') + x' = 0.$

Solution. First we transform the equation to the system of equations

(2)
$$\begin{cases} x' = y \\ y' = -x + \operatorname{sign}(y) - y. \end{cases}$$

We choose the segment AB, where A = (0, 0.5), B = (0, 2.2) and construct a number of approximate solutions to initial value problems with initial points $S \in AB$. We continue the construction until the solution reaches the segment AB. The approximate solution are constructed by the second order Runge-Kutta's method.

Our aim is to find two solutions for which the following order of the points in the segment: A, S_1, E_1, E_2, S_2, B is reached. We choose two solutions corresponding to the initial points $S_1 = (0, 1)$ and $S_2 = (0, 2)$.

It follows from the theory of differential equation (the Poincare-Bendixon theorem) that there exists a periodic solution with the initial point S in the segment E_1E_2 .

The finite difference method for the approximate solution of the boundary value problem

(3)
$$\begin{cases} -y'' + q(x)y = g(x), & x \in (a,b) \\ y(a) = \alpha & y(b) = \beta \end{cases}$$

where $q(x) \ge 0$ and g(x) are continuous. It is known that such a problem has a unique solution.

The construction of the approximate solution.

Let us consider the partition: $a = x_0 < x_1 < \ldots x_N = b, x_j = a + jh, h = \frac{b-a}{N}$.

Algorithm

We construct a sequence $\{y_i\}$, whose elements are considered as approximate values $y_i \approx y(x_i), i = 0, 1, 2..., N$ by the following algorithm

$$y_0 = \alpha -\frac{1}{h^2}(y_{i-1} - 2y_i + y_{i+1}) + q_i y_i = g_i, \quad i = 1, 2, \dots, N-1 y_N = \beta$$

or

$$(2 + q_1 h^2)y_1 - y_2 = g_1 h^2 + \alpha,$$

$$-y_{i-1} + 2y_i - y_{i+1} + q_i h^2 y_i = g_i h^2, \quad i = 2, 3, \dots, N-2$$

$$-y_{N-2} + (2 + q_{N-1} h^2)y_{N-1} = g_{N-1} h^2 + \beta,$$

To simplify calculations, we introduce

$$(4) \quad A = \begin{bmatrix} 2+q_1h^2 & -1 & 0 & \dots & 0 & 0\\ -1 & 2+q_2h^2 & -1 & \dots & 0 & 0\\ 0 & -1 & 2+q_3h^2 & -1 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & -1 & 2+q_{N-2}h^2 & -1\\ 0 & 0 & 0 & 0 & -1 & 2+q_{N-1}h^2 \end{bmatrix}$$

$$\bar{y} = [y_1, y_2, \dots, y_{N-1}]^T,$$

$$\bar{b} = [g_1h^2 + \alpha, g_2h^2, \dots, g_{N-2}h^2, g_{N-1}h^2 + \beta]^T$$

As a result we obtain a system of the linear equations to solve

(5)
$$A\bar{y} = \bar{b}.$$

The existence of its solutions is guaranted by the following properties of A.

The matrix A is positively definite (for sufficiently small h > 0) i.e. one proves that the inequality $x^T \cdot Ax > 0$ is satisfied for any vector $x \neq 0, x \in \mathbb{R}^{N-1}$.

Hence it follows that there exists no vector $x \neq 0$ such that Ax = 0, in other words the matrix A is nonsingular (det $A \neq 0$).

Corollary. The approximate problem has exactly one solution for sufficiently small h > 0.

The error estimate is given in the following theorem

Twierdzenie 1. If $q(x) \ge 0$, then the exact boundary value problem (1) has exactly one solution y(x). Similarly the approximate problem (3) has exactly one solution (for sufficiently small h > 0). Moreover, if $y(x) \in C^4[a, b]$, then the following estimate holds

$$|y(x_i) - y_i| \le \frac{Mh^2}{24}(x_i - a)(b - x_i)$$

for i = 1, 2, ..., N - 1, where $M = \sup |y^{(4)}(x)|$.

Motivation for the form of the finite difference algorithm

As an approximation to $y''(x_i)$, we take

$$\Delta^2 y(x_i) = \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2}$$

Let us assume $y(x) \in C^4[a, b]$ and let us estimate the error $\tau_i(y) = y''(x_i) - \Delta^2 y(x_i)$. Using the Taylor's formula we obtain

$$y(x_i \pm h) = y(x_i) \pm hy'(x_i) + \frac{h^2}{2}y''(x_i) \pm \frac{h^3}{3!}y'''(x_i) + \frac{h^4}{4!}y^{(4)}(x_i \pm \Theta_i^{\pm}h), \quad 0 < \Theta_i^{\pm} < 1.$$

Hence

$$\Delta^2 y(x_i) = y''(x_i) + \frac{h^2}{24} [y^{(4)}(x_i + \Theta_i^+ h) + y^{(4)}(x_i - \Theta_i^- h)] = y''(x_i) + \frac{h^2}{12} y^{(4)}(x_i + \Theta_i h)$$

and finally

$$\tau_i(y) = y''(x_i) - \Delta^2 y(x_i) = -\frac{h^2}{12} y^{(4)}(x_i + \Theta_i h), \quad |\Theta_i| < 1.$$

To summarize, since $y''(x_i) = \Delta^2 y(x_i) + \tau_i(y)$, we observe that the following relations hold

$$y(x_0) = \alpha;$$

$$-\frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{h^2} + q(x_i)y(x_i) = g(x_i) + \tau_i(y), \quad i = 1, 2, \dots, N-1$$

$$y(x_N) = \beta$$

The finite difference method for the approximate solution of more general boundary value problems

(6)
$$\begin{cases} -y'' + p(x)y' + q(x)y = g(x), & x \in (a, b) \\ y(a) = \alpha & y(b) = \beta \end{cases}$$

Assuming this equation has a unique solution we descritize the problem similarly as problem (3) and obtain

$$y_0 = \alpha$$

- $\frac{1}{h^2}(y_{i-1} - 2y_i + y_{i+1}) + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = g_i, \quad i = 1, 2, \dots, N-1$
 $y_N = \beta$

or

$$\begin{aligned} &(2+q_1h^2)y_1 - (1-p_1h/2)y_2 = g_1h^2 + (1+p_1h/2)\alpha, \\ &-(1+p_ih/2)y_{i-1} + (2+q_ih^2)y_i - (1-p_ih/2)y_{i+1} = g_ih^2, \quad i = 2, 3, \dots, N-2 \\ &-(1+p_{N-1}h/2)y_{N-2} + (2+q_{N-1}h^2)y_{N-1} = g_{N-1}h^2 + (1-p_{N-1}h/2)\beta, \end{aligned}$$

where $p_i = p(x_i)$, $q_i = q(x_i)$ and $g_i = (g(x_i), i = 1, 2, ..., N)$. To simplify the algorithm, we introduce

	$\begin{bmatrix} 2+q_1h^2\\ -(1+p_2h/2) \end{bmatrix}$	$-(1 - p_1 h/2) 2 + q_2 h^2$	$0 - (1 - p_2 h/2)$		0 0	0 0
	0	$-(1+p_3h/2)$	$2 + q_3 h^2$	$-(1-p_3h/2)$		0
A =	· ·	•	•	•	•	·
		:		:	:	:
	0	0	0	$-(1 + p_{N-2}h/2)$	$2 + q_{N-2}h^2$	$-(1 - p_{N-2}h/2)$
	LO	0	0	0	$-(1+p_{N-1}h/2)$	$2 + q_{N-1}h^2$

$$\bar{y} = [y_1, y_2, \dots, y_{N-1}]^T,$$

$$\bar{b} = [g_1h^2 + (1 + p_1h/2)\alpha, g_2h^2, \dots, g_{N-2}h^2, g_{N-1}h^2 + (1 - p_{N-1}h/2)\beta]^T$$

As a result we obtain a system of the linear equations to solve

(7)
$$A\bar{y} = \bar{b}.$$