Lecture 4

The finite difference methods for the hyperbolic differential equations (the wave equations).
Let us consider the following problem

$$
\begin{equation*}
\frac{\partial u}{\partial t}=a(x, t) \frac{\partial u}{\partial x}+f(x, t), \quad x \in(\alpha, \beta), \quad t \in(0, T) \tag{1}
\end{equation*}
$$

where the coefficient $a=a(x, t)$ may be nonconstant but it is assumed to be still either positive, $a(x, t)>0$ or negative, $a(x, t)<0$ for all (x, t), i.e. $a(x, t)$ has a constant sign. The problem is completed with initial data

$$
\begin{equation*}
u(x, 0)=v(x), \quad x \in(\alpha, \beta), \tag{2}
\end{equation*}
$$

and depending on the sign of $a(x, t)$ with the boundary condition

$$
\begin{cases}u(\alpha, t)=\phi(t), & \text { if } a(x, t)<0 \tag{3}\\ u(\beta, t)=\psi(t), & \text { if } a(x, t)>0\end{cases}
$$

I. Case $a(x, t)>0$

II. Case $a(x, t)<0$

Remark. In the case when $a(x, t)$ changes its sign inside the region $x \in(\alpha, \beta), t \in(0, T)$ the problem becomes more complicated and solutions may have singularities.

Example. Let

$$
\begin{aligned}
& u_{t}=a u_{x}, \text { where } a \text { is constant } \\
& v(x)=u(x, 0) .
\end{aligned}
$$

We check that the solution of this equation is given by $u(x, t)=v(x+a t)$. We see that a special role is played by lines $x+a t=$ const, in this case it follows from this formula, that $u(x, t)$ is constant along those. Those lines are called the characteristics of the equation. We find them in a parametric form $(x=x(s), y=y(s))$ as the solutions of the following problem

$$
\left\{\begin{array}{l}
t^{\prime}(s)=1 \\
x^{\prime}(s)=-a
\end{array}\right.
$$

whose solution is equal $(t=s+t(0), x=-a s+x(0))$, usually we take $t(0)=0$, hence $(t=s, x+a t=x(0)(=$ const $))$

II. Characteristics $\mathrm{x}+$ at $=$ const, case $a<0$

Remark. A similar statement holds for variable coefficient $a=a(x, t)$, in which case the characteristic is curved and its parametric form $(t=t(s), x=x(s))$ is obtained as a solution of the system of the differential equations

$$
\left\{\begin{array}{l}
t^{\prime}(s)=1 \\
x^{\prime}(s)=-a(x, t) \\
t(0)=0, x(0)=x_{0}
\end{array}\right.
$$

1. Characteristics for $u_{t}=a(x, t) u_{x}+f(x, t)$, case $a(x, t)<0$

Discretization of the problem.
We discretize the intervals
$\alpha=x_{0}<x_{1}<\cdots<x_{n}=\beta, h=(\beta-\alpha) / n$
$0=t_{0}<t_{1}<\cdots<t_{m}=T, k=(T-0) / m$.
We define the approximate solution as a number sequence $\left\{u_{i j}\right\}$ such that $u_{i 0}=v\left(x_{i}\right)$, $i=0,1, \ldots, n u_{0 j}=\phi\left(t_{j}\right), j=0,1,2, \ldots, m$ and $u_{i j} \approx u\left(x_{i}, t_{j}\right) i=1,2,3, \ldots, n$,
$j=1,2, \ldots, m$.

There are many schemes for constructing sequence $\left\{u_{i j}\right\}$. We consider the following ones

1. the forward explicit scheme
2. the backward implicit scheme

3. the Crank-Nicolson scheme

We begin with a consideration of

1. the forward explicit scheme

Case $a(x, t)>0$.
(4) $\frac{u_{i, j+1}-u_{i j}}{k}=a_{i j} \frac{u_{i+1, j}-u_{i j}}{h}+f_{i j}, \quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1$,
where $a_{i j}=a\left(x_{i}, t_{j}\right)$. Hence we obtain

$$
\begin{align*}
& u_{i, j+1}=\lambda a_{i, j} u_{i+1, j}+\left(1-\lambda a_{i, j}\right) u_{i j}+k f_{i j}, \quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1, \\
& u_{i, 0}=v_{i}, \quad u(n, j)=\psi_{j}, \quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1, \tag{5}
\end{align*}
$$

where $\lambda=k / h, v_{i}=v\left(x_{i}\right), \psi_{j}=\psi\left(t_{j}\right)$. In the matrix form we have
(6) $\left[\begin{array}{c}u_{0, j+1} \\ u_{1, j+1} \\ \vdots \\ u_{n-1, j+1}\end{array}\right]=\left[\begin{array}{ccccc}1-\lambda a_{0, j} & \lambda a_{0, j} & 0 & \cdots & 0 \\ 0 & 1-\lambda a_{1, j} & \lambda a_{1, j} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1-\lambda a_{n-1, j}\end{array}\right]\left[\begin{array}{c}u_{0, j} \\ u_{1, j} \\ \vdots \\ u_{n-1, j}\end{array}\right]+$
$\lambda a_{n-1, j}\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ u_{n, j}\end{array}\right]+k\left[\begin{array}{c}f_{0, j} \\ f_{1, j} \\ \vdots \\ f_{n-1, j}\end{array}\right]$
in a short form
(7) $\quad \vec{u}_{j+1}=A \vec{u}_{j}+\lambda a_{n-1, j} \vec{w}_{j}+k \vec{f}_{j}$

Starting with the vector $\vec{u}_{0}=\left[\begin{array}{c}u_{0,0} \\ u_{1,0} \\ \vdots \\ u_{n-1,0}\end{array}\right]$ and the value $u_{n, 0}$ we get subsequently the vectors of the approximate values $\vec{u}_{1}=\left[\begin{array}{c}u_{0,1} \\ u_{1,1} \\ \vdots \\ u_{n-1,1}\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}u_{0,2} \\ u_{1,2} \\ \vdots \\ u_{n-1,2}\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}u_{0,3} \\ u_{1,3} \\ \vdots \\ u_{n-1,3}\end{array}\right], \ldots$

The stability condition of the method $=$ the CFL condition (Courant-Friedrichs-Levy condition):
(8) $\lambda \max _{i j}\left|a_{i j}\right| \leq 1$ (the CFL condition)

Case $a(x, t)<0$.
(9) $\quad \frac{u_{i, j+1}-u_{i j}}{k}=a_{i j} \frac{u_{i, j}-u_{i-1, j}}{h}+f_{i j}, \quad i=1,2, \ldots, n, j=0,1,2, \ldots, m-1$,

Hence we obtain
$u_{i, j+1}=-\lambda a_{i j} u_{i-1, j}+\left(1+\lambda a_{i j}\right) u_{i j}+k f_{i j}, \quad i=1,2, \ldots, n, j=0,1,2, \ldots, m-1$,
(10) $u_{i, 0}=v_{i}, u(0, j)=\phi_{j}, \quad i=1,2, \ldots, n, j=0,1,2, \ldots, m-1$,
where $\lambda=k / h, v_{i}=v\left(x_{i}\right), \phi_{j}=\phi\left(t_{j}\right)$. In the matrix form we have
(11) $\left[\begin{array}{c}u_{1, j+1} \\ u_{2, j+1} \\ \vdots \\ u_{n, j+1}\end{array}\right]=\left[\begin{array}{ccccc}1+\lambda a_{1, j} & 0 & 0 & \ldots & 0 \\ -\lambda a_{2, j} & 1+\lambda a_{2, j} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & -\lambda a_{n, j} & 1+\lambda a_{n, j}\end{array}\right]\left[\begin{array}{c}u_{1, j} \\ u_{2, j} \\ \vdots \\ u_{n, j}\end{array}\right]-$

$$
\lambda a_{1, j}\left[\begin{array}{c}
u_{0, j} \\
0 \\
\vdots \\
0
\end{array}\right]+k\left[\begin{array}{c}
f_{1, j} \\
f_{2, j} \\
\vdots \\
f_{n, j}
\end{array}\right] .
$$

The stability method - the CFL condition (8).
2. the backward implicit scheme

Case $a(x, t)>0$.
(12) $\frac{u_{i, j+1}-u_{i, j}}{k}=a_{i, j+1} \frac{u_{i+1, j+1}-u_{i, j+1}}{h}+f_{i, j+1}, \quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1$,
where $a_{i j}=a\left(x_{i}, t_{j}\right)$. Hence we obtain

$$
\begin{align*}
& -\lambda a_{i, j+1} u_{i+1, j+1}+\left(1+\lambda a_{i, j+1}\right) u_{i, j+1}=u_{i, j}+k f_{i, j+1} \tag{13}\\
& i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1 \\
& u_{i, 0}=v_{i}, \quad u(n, j)=\psi_{j}, \quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1
\end{align*}
$$

where $\lambda=k / h, v_{i}=v\left(x_{i}\right), \psi_{j}=\psi\left(t_{j}\right)$. In the matrix form we have

$$
\begin{aligned}
&(14) {\left[\begin{array}{ccccc}
1+\lambda a_{0, j+1} & -\lambda a_{0, j+1} & 0 & \cdots & 0 \\
0 & 1+\lambda a_{1, j+1} & -\lambda a_{1, j+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1+\lambda a_{n-1, j+1}
\end{array}\right]\left[\begin{array}{c}
u_{0, j+1} \\
u_{1, j+1} \\
\vdots \\
u_{n-1, j+1}
\end{array}\right]=} \\
& {\left[\begin{array}{c}
u_{0, j} \\
u_{1, j} \\
u_{n-1, j}
\end{array}\right]+\lambda a_{n-1, j+1}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
u_{n, j+1}
\end{array}\right]+k\left[\begin{array}{c}
f_{0, j+1} \\
f_{1, j+1} \\
\vdots \\
f_{n-1, j+1}
\end{array}\right] }
\end{aligned}
$$

1. Since the determinant $\operatorname{det}(A)=\left(1+\lambda a_{0, j+1}\right)\left(1+\lambda a_{1, j+1}\right) \ldots\left(1+\lambda a_{n-1, j+1}\right) \neq 0$, the
system (19) has allways a unique solution. Starting with the vector
$\left[\begin{array}{c}u_{0,0} \\ u_{1,0} \\ \vdots \\ u_{n-1,0}\end{array}\right]$ and the value $u_{n-1,0}$
$u_{n, 1}$ we solve subsequently the system of equations (19) which gives the vectors of the approximate values $\left[\begin{array}{c}u_{0,1} \\ u_{1,1} \\ \vdots \\ u_{n-1,1}\end{array}\right],\left[\begin{array}{c}u_{0,2} \\ u_{1,2} \\ \vdots \\ u_{n-1,2}\end{array}\right],\left[\begin{array}{c}u_{0,3} \\ u_{1,3} \\ \vdots \\ u_{n-1,3}\end{array}\right], \ldots$
2. The method is stable for $h, k>0$.
3. The method is of the first order accurate.

Case $a(x, t)<0$.
(15) $\quad \frac{u_{i, j+1}-u_{i, j}}{k}=a_{i, j+1} \frac{u_{i, j+1}-u_{i-1, j+1}}{h}+f_{i, j+1}, \quad i=1,2, \ldots, n, j=0,1,2, \ldots, m-1$,

Hence we obtain

$$
\begin{align*}
& \lambda a_{i, j+1} u_{i-1, j+1}+\left(1-\lambda a_{i, j+1}\right) u_{i, j+1}=u_{i, j}+k f_{i, j+1} \tag{16}\\
& i=1,2, \ldots, n, j=0,1,2, \ldots, m-1 \\
& u_{i, 0}=v_{i}, \quad u(0, j)=\phi_{j}, \quad i=1,2, \ldots, n, j=0,1,2, \ldots, m
\end{align*}
$$

where $\lambda=k / h, v_{i}=v\left(x_{i}\right), \phi_{j}=\phi\left(t_{j}\right)$. In the matrix form we have
(17) $\left[\begin{array}{ccccc}1-\lambda a_{1, j+1} & 0 & 0 & \ldots & 0 \\ \lambda a_{2, j+1} & 1-\lambda a_{2, j+1} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda a_{n, j+1} & 1-\lambda a_{n, j+1}\end{array}\right]\left[\begin{array}{c}u_{1, j+1} \\ u_{2, j+1} \\ \vdots \\ u_{n, j+1}\end{array}\right]=$

$$
\left[\begin{array}{c}
u_{1, j} \\
u_{2, j} \\
\vdots \\
u_{n, j}
\end{array}\right]-\lambda a_{1, j+1}\left[\begin{array}{c}
u_{0, j+1} \\
0 \\
\vdots \\
0
\end{array}\right]+k\left[\begin{array}{c}
f_{1, j+1} \\
f_{2, j+1} \\
\vdots \\
f_{n, j+1}
\end{array}\right]
$$

1. Since the determinant $\operatorname{det}(A)=\left(1-\lambda a_{1, j+1}\right)\left(1-\lambda a_{2, j+1}\right) \ldots\left(1-\lambda a_{n, j+1}\right) \neq 0$, the system (21) has alweays a unique solution. Starting with the vector $\left[\begin{array}{c}u_{0,0} \\ u_{1,0} \\ \vdots \\ u_{n-1,0}\end{array}\right]$ and the value $u_{0,1}$ and solving subsequently the system of equations (21) we get the vectors of the approximate values $\left[\begin{array}{c}u_{0,1} \\ u_{1,1} \\ \vdots \\ u_{n-1,1}\end{array}\right],\left[\begin{array}{c}u_{0,2} \\ u_{1,2} \\ \vdots \\ u_{n-1,2}\end{array}\right],\left[\begin{array}{c}u_{0,3} \\ u_{1,3} \\ \vdots \\ u_{n-1,3}\end{array}\right], \ldots$
2. The method is stable for $h, k>0$.
3. The method is of the first order accurate.

3. The Crank-Nicolson scheme

the case $a(x, t)>0$
The basic relation

> (18) $\quad \frac{u_{i, j+1}-u_{i, j}}{k}=\frac{1}{2} a_{i, j+1} \frac{u_{i+1, j+1}-u_{i, j+1}}{h}+\frac{1}{2} f_{i, j+1}+\frac{1}{2} a_{i j} \frac{u_{i+1, j}-u_{i j}}{h}+\frac{1}{2} f_{i j}$
> $\quad i=0,1,2, \ldots, n-1, j=0,1,2, \ldots, m-1$

The matrix form of the algorithm
(19) $\left[\begin{array}{ccccc}1+\frac{1}{2} \lambda a_{0, j+1} & -\frac{1}{2} \lambda a_{0, j+1} & 0 & \cdots & 0 \\ 0 & 1+\frac{1}{2} \lambda a_{1, j+1} & -\frac{1}{2} \lambda a_{1, j+1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1+\frac{1}{2} \lambda a_{n-1, j+1}\end{array}\right]\left[\begin{array}{c}u_{0, j+1} \\ u_{1, j+1} \\ \vdots \\ u_{n-1, j+1}\end{array}\right]=$

$$
\left[\begin{array}{ccccc}
1-\frac{1}{2} \lambda a_{0, j} & \frac{1}{2} \lambda a_{0, j} & 0 & \cdots & 0 \\
0 & 1-\frac{1}{2} \lambda a_{1, j} & \frac{1}{2} \lambda a_{1, j} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1-\frac{1}{2} \lambda a_{n-1, j}
\end{array}\right]\left[\begin{array}{c}
u_{0, j} \\
u_{1, j} \\
\vdots \\
u_{n-1, j}
\end{array}\right]+
$$

$$
\frac{1}{2} \lambda a_{n-1, j+\frac{1}{2}}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
u_{n, j+\frac{1}{2}}
\end{array}\right]+k\left[\begin{array}{c}
f_{0, j+\frac{1}{2}} \\
f_{1, j+\frac{1}{2}} \\
\vdots \\
f_{n-1, j+\frac{1}{2}}
\end{array}\right]
$$

where $f_{i, j+\frac{1}{2}}=\frac{1}{2}\left(f_{i j}+f_{i j+1}\right), a_{n-1, j+\frac{1}{2}}=\frac{1}{2}\left(a_{n-1, j}+a_{n-1, j+1}\right)$
the case $a(x, t)<0$
The basic relations
(20) $\quad \frac{u_{i, j+1}-u_{i, j}}{k}=\frac{1}{2} a_{i, j+1} \frac{u_{i, j+1}-u_{i-1, j+1}}{h}+\frac{1}{2} f_{i, j+1}+\frac{1}{2} a_{i j} \frac{u_{i, j}-u_{i-1, j}}{h}+\frac{1}{2} f_{i j}$,
$i=1,2, \ldots, n, j=0,1,2, \ldots, m-1$,

The matrix form of the algorithm
(21) $\left[\begin{array}{ccccc}1-\frac{1}{2} \lambda a_{1, j+1} & 0 & 0 & \cdots & 0 \\ \frac{1}{2} \lambda a_{2, j+1} & 1-\frac{1}{2} \lambda a_{2, j+1} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{2} \lambda a_{n, j+1} & 1-\frac{1}{2} \lambda a_{n, j+1}\end{array}\right]\left[\begin{array}{c}u_{1, j+1} \\ u_{2, j+1} \\ \vdots \\ u_{n, j+1}\end{array}\right]=$
$\left[\begin{array}{ccccc}1+\frac{1}{2} \lambda a_{1, j} & 0 & 0 & \cdots & 0 \\ -\frac{1}{2} \lambda a_{2, j} & 1+\frac{1}{2} \lambda a_{2, j} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -\frac{1}{2} \lambda a_{n, j} & 1+\frac{1}{2} \lambda a_{n, j}\end{array}\right]\left[\begin{array}{c}u_{1, j} \\ u_{2, j} \\ \vdots \\ u_{n, j}\end{array}\right]-$
$\lambda a_{1, j+\frac{1}{2}}\left[\begin{array}{c}u_{0, j+1} \\ 0 \\ \vdots \\ 0\end{array}\right]+k\left[\begin{array}{c}f_{1, j+\frac{1}{2}} \\ f_{2, j+\frac{1}{2}} \\ \vdots \\ f_{n, j+\frac{1}{2}}\end{array}\right]$.

