
Lecture 4

The finite difference methods for the hyperbolic differential equations (the wave equations).

Let us consider the following problem

(1)
∂u

∂t
= a(x, t)

∂u

∂x
+ f(x, t), x ∈ (α, β), t ∈ (0, T ),

where the coefficient a = a(x, t) may be nonconstant but it is assumed to be still either
positive, a(x, t) > 0 or negative, a(x, t) < 0 for all (x, t), i.e. a(x, t) has a constant sign. The
problem is completed with initial data

(2) u(x, 0) = v(x), x ∈ (α, β),

and depending on the sign of a(x, t) with the boundary condition{
u(α, t) = ϕ(t), if a(x, t) < 0

u(β, t) = ψ(t), if a(x, t) > 0
(3)
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I. Case a(x, t) > 0

II. Case a(x, t) < 0

Remark. In the case when a(x, t) changes its sign inside the region x ∈ (α, β), t ∈ (0, T ) the
problem becomes more complicated and solutions may have singularities.

Example. Let

ut = aux, where a is constant
v(x) = u(x, 0).

We check that the solution of this equation is given by u(x, t) = v(x+ at). We see that a
special role is played by lines x+ at = const, in this case it follows from this formula, that
u(x, t) is constant along those. Those lines are called the characteristics of the equation. We
find them in a parametric form (x = x(s), y = y(s)) as the solutions of the following problem{

t′(s) = 1

x′(s) = −a



whose solution is equal (t = s+ t(0), x = −as+ x(0)), usually we take t(0) = 0, hence
(t = s, x+ at = x(0)(= const))
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II. Characteristics x+at=const, case a < 0

Remark. A similar statement holds for variable coefficient a = a(x, t), in which case the
characteristic is curved and its parametric form (t = t(s), x = x(s)) is obtained as a solution
of the system of the differential equations

t′(s) = 1

x′(s) = −a(x, t)
t(0) = 0, x(0) = x0
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Discretization of the problem.

We discretize the intervals
α = x0 < x1 < · · · < xn = β, h = (β − α)/n
0 = t0 < t1 < · · · < tm = T , k = (T − 0)/m.

We define the approximate solution as a number sequence {uij} such that ui0 = v(xi),
i = 0, 1, . . . , n u0j = ϕ(tj), j = 0, 1, 2, . . . ,m and uij ≈ u(xi, tj) i = 1, 2, 3, . . . , n,



j = 1, 2, . . . ,m.
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There are many schemes for constructing sequence {uij}. We consider the following ones

1. the forward explicit scheme

2. the backward implicit scheme

3. the Crank-Nicolson scheme

We begin with a consideration of

1. the forward explicit scheme

Case a(x, t) > 0.

(4)
ui,j+1 − uij

k
= aij

ui+1,j − uij

h
+ fij , i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

where aij = a(xi, tj). Hence we obtain

ui,j+1 = λai,jui+1,j + (1− λai,j)uij + kfij , i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

ui,0 = vi, u(n, j) = ψj , i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,(5)

where λ = k/h, vi = v(xi), ψj = ψ(tj). In the matrix form we have


u0,j+1

u1,j+1

...
un−1,j+1

 =


1− λa0,j λa0,j 0 . . . 0

0 1− λa1,j λa1,j . . . 0
...

...
...

...
...

0 0 . . . 0 1− λan−1,j




u0,j

u1,j

...
un−1,j

+(6)

λan−1,j


0
0
...

un,j

+ k


f0,j
f1,j
...

fn−1,j





in a short form

u⃗j+1 = Au⃗j + λan−1,jw⃗j + kf⃗j(7)

Starting with the vector u⃗0 =


u0,0
u1,0
...

un−1,0

 and the value un,0 we get subsequently the vectors

of the approximate values u⃗1 =


u0,1
u1,1
...

un−1,1

, u⃗2 =


u0,2
u1,2
...

un−1,2

, u⃗3 =


u0,3
u1,3
...

un−1,3

, . . . .

The stability condition of the method = the CFL condition (Courant-Friedrichs-Levy
condition):

(8) λmax
ij

|aij| ≤ 1 (the CFL condition)

Case a(x, t) < 0.

(9)
ui,j+1 − uij

k
= aij

ui,j − ui−1,j

h
+ fij , i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,

Hence we obtain

ui,j+1 = −λaijui−1,j + (1 + λaij)uij + kfij , i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,

ui,0 = vi, u(0, j) = ϕj , i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,(10)

where λ = k/h, vi = v(xi), ϕj = ϕ(tj). In the matrix form we have


u1,j+1

u2,j+1

...
un,j+1

 =


1 + λa1,j 0 0 . . . 0
−λa2,j 1 + λa2,j 0 . . . 0
...

...
...

...
...

0 0 . . . −λan,j 1 + λan,j



u1,j
u2,j
...

un,j

−(11)

λa1,j


u0,j
0
...
0

+ k


f1,j
f2,j
...

fn,j

 .

The stability method - the CFL condition (8).

2. the backward implicit scheme

Case a(x, t) > 0.



(12)
ui,j+1 − ui,j

k
= ai,j+1

ui+1,j+1 − ui,j+1

h
+ fi,j+1, i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

where aij = a(xi, tj). Hence we obtain

−λai,j+1ui+1,j+1 + (1 + λai,j+1)ui,j+1 = ui,j + kfi,j+1,(13)

i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

ui,0 = vi, u(n, j) = ψj , i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

where λ = k/h, vi = v(xi), ψj = ψ(tj). In the matrix form we have


1 + λa0,j+1 −λa0,j+1 0 . . . 0

0 1 + λa1,j+1 −λa1,j+1 . . . 0
...

...
...

...
...

0 0 . . . 0 1 + λan−1,j+1




u0,j+1

u1,j+1

...
un−1,j+1

 =(14)


u0,j

u1,j

...
un−1,j

+ λan−1,j+1


0
0
...

un,j+1

+ k


f0,j+1

f1,j+1

...
fn−1,j+1



1. Since the determinant det(A) = (1 + λa0,j+1)(1 + λa1,j+1) . . . (1 + λan−1,j+1) ̸= 0, the

system (19) has allways a unique solution. Starting with the vector


u0,0
u1,0
...

un−1,0

 and the value
un,1 we solve subsequently the system of equations (19) which gives the vectors of the

approximate values


u0,1
u1,1
...

un−1,1

,


u0,2
u1,2
...

un−1,2

,


u0,3
u1,3
...

un−1,3

, . . . .
2. The method is stable for h, k > 0.

3. The method is of the first order accurate.

Case a(x, t) < 0.

(15)
ui,j+1 − ui,j

k
= ai,j+1

ui,j+1 − ui−1,j+1

h
+ fi,j+1, i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,

Hence we obtain

λai,j+1ui−1,j+1 + (1− λai,j+1)ui,j+1 = ui,j + kfi,j+1,(16)

i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,

ui,0 = vi, u(0, j) = ϕj , i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m,

where λ = k/h, vi = v(xi), ϕj = ϕ(tj). In the matrix form we have




1− λa1,j+1 0 0 . . . 0
λa2,j+1 1− λa2,j+1 0 . . . 0
...

...
...

...
...

0 0 . . . λan,j+1 1− λan,j+1



u1,j+1

u2,j+1

...
un,j+1

 =(17)


u1,j
u2,j
...

un,j

− λa1,j+1


u0,j+1

0
...
0

+ k


f1,j+1

f2,j+1

...
fn,j+1

 .

1. Since the determinant det(A) = (1− λa1,j+1)(1− λa2,j+1) . . . (1− λan,j+1) ̸= 0, the system

(21) has alweays a unique solution. Starting with the vector


u0,0
u1,0
...

un−1,0

 and the value u0,1
and solving subsequently the system of equations (21) we get the

vectors of the approximate values


u0,1
u1,1
...

un−1,1

,


u0,2
u1,2
...

un−1,2

,


u0,3
u1,3
...

un−1,3

, . . . .
2. The method is stable for h, k > 0.

3. The method is of the first order accurate.

3. The Crank-Nicolson scheme

the case a(x, t) > 0

The basic relation

ui,j+1 − ui,j

k
=

1

2
ai,j+1

ui+1,j+1 − ui,j+1

h
+

1

2
fi,j+1 +

1

2
aij

ui+1,j − uij

h
+

1

2
fij ,(18)

i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . ,m− 1,

The matrix form of the algorithm




1 + 1

2
λa0,j+1 − 1

2
λa0,j+1 0 . . . 0

0 1 + 1
2
λa1,j+1 − 1

2
λa1,j+1 . . . 0

...
...

...
...

...
0 0 . . . 0 1 + 1

2
λan−1,j+1




u0,j+1

u1,j+1

...
un−1,j+1

 =(19)


1− 1

2
λa0,j

1
2
λa0,j 0 . . . 0

0 1− 1
2
λa1,j

1
2
λa1,j . . . 0

...
...

...
...

...
0 0 . . . 0 1− 1

2
λan−1,j




u0,j

u1,j

...
un−1,j

+

1

2
λan−1,j+ 1

2


0
0
...

un,j+ 1
2

+ k


f0,j+ 1

2

f1,j+ 1
2

...
fn−1,j+ 1

2



where fi,j+ 1
2
= 1

2
(fij + fij+1), an−1,j+ 1

2
= 1

2
(an−1,j + an−1,j+1)

the case a(x, t) < 0

The basic relations

ui,j+1 − ui,j

k
=

1

2
ai,j+1

ui,j+1 − ui−1,j+1

h
+

1

2
fi,j+1 +

1

2
aij

ui,j − ui−1,j

h
+

1

2
fij ,(20)

i = 1, 2, . . . , n, j = 0, 1, 2, . . . ,m− 1,

The matrix form of the algorithm


1− 1

2λa1,j+1 0 0 . . . 0
1
2λa2,j+1 1− 1

2λa2,j+1 0 . . . 0
...

...
...

...
...

0 0 . . . 1
2λan,j+1 1− 1

2λan,j+1



u1,j+1

u2,j+1

...
un,j+1

 =(21)


1 + 1

2λa1,j 0 0 . . . 0
− 1

2λa2,j 1 + 1
2λa2,j 0 . . . 0

...
...

...
...

...
0 0 . . . − 1

2λan,j 1 + 1
2λan,j



u1,j
u2,j
...

un,j

−

λa1,j+ 1
2


u0,j+1

0
...
0

+ k


f1,j+ 1

2

f2,j+ 1
2

...
fn,j+ 1

2

 .


