
Lecture 5

Finite difference methods for parabolic problems. The pure initial value problem{
∂u
∂t

= a2∆u in Rn × R+, (n = 1, 2, 3)

u(x, 0) = v(x) in Rn

where v(x) is a given smooth bounded function. The meaning of the symbol ∆u (the
laplacian of u) is as follows:

∆u =


∂2u
∂x2 (x, t), (n = 1),

∂2u
∂x2 (x, y, t) +

∂2u
∂y2

(x, y, t), (n = 2),

∂2u
∂x2 (x, y, z, t) +

∂2u
∂y2

(x, y, z, t) + ∂2u
∂z2

(x, y, z, t), (n = 3)

Physical interpretation. The equation above is known as the heat equation or also as the
diffusion equation. It describes in typical applications the evolution in time of the density
u(x, y, z, t) of some quantity such as heat, chemical concentration, etc. If V ⊂ U is any
smooth subregion, the rate of change of the total quantity within V equals the negative of the
net flux F⃗ (x, y, z, t) through S = ∂V : let us consider

some interval of time [t, t+∆t], ∆t,

∆m - mass of medium flowing through the area S within ∆t,

ν⃗ - the unit normal vector to the surface S. Then we have the relation

∆m ≈ −(F⃗ · ν⃗) · S ·∆t

Thus the total change of mass m in the region V within ∆t is given as

m(t+∆t)−m(t) =

∫
V

(u(x, t+∆t)− u(x, t))dV =
∑

∆m = −∆t

∫
∂V

(F⃗ · ν⃗)dS.

Hence the rate of change is given as

lim
∆→0

m(t+∆t)−m(t)

∆t
=

d

dt

∫
V

udV =

∫
V

utdV = −
∫
∂V

(F⃗ · ν⃗)dS



The change of the surface integral into the volume integral (integration by parts)∫
∂V

F⃗ · ν⃗dS =

∫
V

div F⃗ dV

gives

d

dt

∫
V

u dV =

∫
V

ut dV = −
∫
V

div F⃗ dV.

where

F⃗ (x, y, z, t) = [P (x, y, z, t), Q(x, y, z, t), R(x, y, z, t)]

is the flux of the medium density, i.e. it is the amount of medium flowing through the unit of
area in unit of time and

div F⃗ (x, y, z, t) = (Px +Qy +Rz)(x, y, z, t),

As this integral relation is satisfied in any subregion V we get the equality

ut = −div F⃗ ,

In many situations F⃗ is proportional to the gradient of u (this is the Fourier or Fick law):

(1) F⃗ = −a2∇u (a > 0),

where

∇u(x, y, z, t) = [ux, uy, uz],

but points in the opposite direction (since the flow is always from the regions of higher
concentration to the regions of lower concentration).
Substituting (1) into equation above, we obtain the PDE

(2) ut = a2div(∇u) = a2∆u,

which is called the heat equation.

The heat equation appears as well in the study of the Brownian motion.
The heat conduction problem has a unique solution, many properties of which follow from the
representation of the solution to the problem{

ut = a2uxx

u(x, 0) = v(x), x ∈ R, t > 0

Its solution is given in the following formula

u(x, t) =
1

a
√
4πt

∞∫
−∞

e−
y2

4a2tv(x− y)dy.



In particular, we note that this solution is bounded

max
x

|u(x, t)| ≤ 1

a
√
4πt

∞∫
−∞

e−
y2

4a2t |v(x− y)|dy ≤

max
x

|v(x)| 1

a
√
4πt

∞∫
−∞

e−
y2

4a2tdy = max
x

|v(x)| = ||v||∞

Parabolic problems in bounded domains. The model problem

1a. differential equation

∂u

∂t
= a2

∂2u

∂x2
+ f(x, t) in (a, b)× (0, T )

1b. additional conditions

an initial condition:

u(x, 0) = v(x), x ∈ (a, b)

a boundary condition (of the Dirichlet Type):

u(a, t) = ϕ(t), u(b, t) = ψ(t), t ∈ (0, T ).

Further, for simplicity we assume that ϕ(t) ≡ 0, ψ(t) ≡ 0.

2. Approximation by the difference method

2a. Discretization

a = x0 < x1 < x2 < · · · < xN = b, h = (b− a)/N,

0 = t0 < t1 < t2 < · · · < tM = T, k = (T − 0)/M.

2b. Approximate solution

a series: {uji}, uji ≈ u(xi, tj), i = 0, 1, 2, . . . , N, j = 0, 1, 2, . . . , N

2c. Basic relations (depending on the approximate method)

Explicit method

U j+1
i − U j

i

k
= a2

U j
i+1 − 2U j

i + U j
i−1

h2
+ fi,j,

i = 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . , N − 1

Implicit method

U j+1
i − U j

i

k
= a2

U j+1
i+1 − 2U j+1

i + U j+1
i−1

h2
+ fi,j+1,

i = 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . , N − 1



The Crank-Nicolson method

U j+1
i − U j

i

k
=

1

2
a2
U j
i+1 − 2U j

i + U j
i−1

h2
+

1

2
a2
U j+1
i+1 − 2U j+1

i + U j+1
i−1

h2
+ fi,j+ 1

2
,

fi,j+ 1
2
= f(xi, tj+ 1

2
k), i = 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . , N − 1

2d. Additional information

ui,0 = vi, vi = v(xi), i = 0, 1, 2, . . . , N

u0,j = ϕj, ϕj = ϕ(tj), uM,j = ψj, ψj = ψ(tj), j = 0, 1, 2, . . . ,M − 1

3. Algorithms in the matrix form

Explicit method



U j+1
1

U j+1
2

U j+1
3
...

U j+1
M−2

U j+1
M−1


=



1− 2λ λ 0 . . . 0 0
λ 1− 2λ λ . . . 0 0
0 λ 1− 2λ λ . . . 0
...

...
...

...
...

...
0 0 0 λ 1− 2λ λ
0 0 0 0 λ 1− 2λ





U j
1

U j
2

U j
3
...

U j
M−2

U j
M−1


+ k



f j1
f j2
f j3
...

f jM−2

f jM−1


+ λ



ϕj
0
0
...
0
ψj



for j = 0, 1, 2, . . . , N − 1.

The method is stable if

(3) λ = a2
k

h2
≤ 1

2
.

Implicit method

B


U j+1
1

U j+1
2
...

U j+1
M−1

 =


U j
1

U j
2
...

U j
M−1

+ k


f j+1
1

f j+1
2
...

f j+1
M−1

+ λ


ϕj+1

0
...
0

ψj+1


where

B =


1 + 2λ −λ 0 0 . . . 0
−λ 1 + 2λ −λ 0 . . . 0
...

...
...
... . . .

...
0 0 0 . . . −λ 1 + 2λ

 , λ = a2
k

h2



B is diagonally dominant, symmetric and tridiagonal. Thus it is invertible and the vector[
Un+1
1 , Un+1

2 , . . . , Un+1
M−1

]
can be determined

The stability of the method.

The stability of the method does not require any relation between k and h.

The convergence results for the implicit method

Theorem 4

||Un − un||∞ ≤ C · n · k(h2 + k)max
t≤T

|u(·, t)|C4

Comments

The above convergence result for the backward Euler method is satisfactory in that it requires
no restrictions on the mesh ratio k/h2 = λ. On the other hand, since it is only first order
accurate in time, the error in the time discretization will dominate unless k is chosen much
smaller than h.

3. The Crank-Nicolson scheme

Introducing the matrices

B =


1 + λ −1

2
λ 0 0 . . . 0

−1
2
λ 1 + λ −1

2
λ 0 . . . 0

...
...

...
... . . .

...
0 0 0 . . . −1

2
λ 1 + λ



A =


1− λ 1

2
λ 0 0 . . . 0

1
2
λ 1− λ 1

2
λ 0 . . . 0

...
...

...
... . . .

...
0 0 0 . . . 1

2
λ 1− λ



the Crank-Nicolson scheme can be written in the form

B


U j+1
1

U j+1
2
...

U j+1
M−1

 = A


U j
1

U j
2
...

U j
M−1

+ k


f
j+ 1

2
1

f
j+ 1

2
2
...

f
j+ 1

2
M−1

+ λ


ϕj+ 1

2

0
...

ψj+ 1
2





The method is stable if

(4) λ = a2
k

h2
≤ 1.

Remark

It can be shown that in the case of the L2 norm || · ||2 no restrictions on λ are needed.

The convergence result.

Theorem 5

For λ ≤ 1

||Un − un||∞ ≤ C · nk(h2 + k2)max
t≤T

|u(·, t)|C4

For any λ > 0

||Un − un||2,h ≤ C · nk(h2 + k2)max
t≤T

|u(·, t)|C4

definitions:

- of the discrete L2 - norm || · ||2,h:

||w||2,h =

(
h

M∑
j=0

w2
j

)1/2

- max
t≤T

|u(·, t)|C4 = max
0≤k≤4

mk,

where

m0 = max
t≤T

|u(·, t)|, m1 = max
t≤T

|ux(·, t)|, m2 = max
t≤T

|uxx(·, t)|,
m3 = max

t≤T
|uxxx(·, t)|, m4 = max

t≤T
|uxxxx(·, t)|.

4. The Fourier method for solution of the problem
(1) ut = a2uxx

(2) u(0, t) = u(l, t) = 0

(3) u(x, 0) = v(x)

1. We observe that the functions

e−
π2a2

l2
t sin

πx

l
, e−

4π2a2

l2
t sin

2πx

l
, e−

9π2a2

l2
t sin

3πx

l
,

e−
16π2a2

l2
t sin

4πx

l
, . . . , e−

k2π2a2

l2
t sin

kπx

l
, . . .



satisfy equations (1) and (2). Hence the solution to the whole problem (1)− (3) is sought in
the following form

u(x, t) =
∞∑
k=1

ake
− k2π2a2

l2
t sin

kπx

l

the coefficients ak are to be determined. To find them we first observe that

v(x) = u(x, 0) =
∞∑
k=1

ak sin
kπx

l

The presentation of v(x) in the above series is called the Fourier expansion of v(x).

2. We find the expansion of the function v(x) in the Fourier series

v(x) =
∞∑
k=1

ak sin
kπx

l

The coefficients ak are given as

ak =

l∫
0

v(x) sin
kπx

l
dx/

l∫
0

sin2 kπx

l
dx =

2

l

l∫
0

v(x) sin
kπx

l
dx.

3. Finally, the solution of the whole problem (1), (2), (3) is a function u(x, t) given as

u(x, t) =
∞∑
k=1

ake
−π2k2a2

l2
t sin

kπx

l

4. We define approximate solutions as finite sums, n = 1, 2, 3, . . .

up(x, t) =
n∑

k=1

ake
−π2k2a2

l2
t sin

kπx

l


