
The coefficients ak(0) are retrieved from the initial condition as follows

v(x) =
∞�

k=1

vk sin
�
kπ

x

l

�
,

vk =

l�

0

v(x) sin
�
kπ

x

l

�
dx/

l�

0

sin2
�
kπ

x

l

�
dx =

2

l

l�

0

v(x) sin
�
kπ

x

l

�
dx,(10)

ak(0) = vk, k = 1, 2, 3, . . .

Remark

In practise, the integral in (30) is calculated approximately by using for
example the complex Simpson method

l�

0

f(s)ds ≈ 1

6
h

n�

i=0

�
f(xi) + 4f(xi+ 1

2
) + f(xi+1)

�
(11)

where 0 = x0 ≤ x1 ≤ x2 ≤ . . . xn+1 = l, h = (xi+1 − xi)/n, xi+ 1
2
= xi+xi+1

2
.

The finite difference methods for the hyperbolic differential equations.

Let us consider the wave equation as the model problem.





∂2u
∂t2

= α2 ∂2u
∂x2 + f(x, t), 0 < x < l, t > 0,

u(0, t) = 0, u(l, t) = 0,

u(x, 0) = h(x), 0 ≤ x ≤ l,
∂u
∂t
(x, 0) = g(x), 0 ≤ x ≤ l,

where f(x), g(x), h(x) are given smooth bounded functions.

1. The forward explicit Euler’s scheme produces the sequence of
approximate values for the solution by relations

Un−1
i − 2Un

i + Un+1
i

k2
= α2U

n
i−1 − 2Un

i + Un
i+1

h2
+ fn

i ,

where fn
i = f(xi, tn). If λ = α k

h
, we can write this difference equation in the

vector form

IUn−1 − 2IUn + IUn+1 = λ2AUn + k2fn(12)



where Un = [Un
1 , U

n
2 , . . . , U

n
m−1]

�, similarly Un−1 and Un+1,
fn = [fn

1 , f
n
2 , . . . , f

n
m−1]

�,

A =




−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
...
...
...
...
...
...

0 0 0 0 1 −2


(13)

and I is identity matrix of the size (m− 1)× (m− 1). After a modification

Un+1 = (2I + λ2A)Un − IUn−1 + k2fn.(14)

This equation holds for each n = 1, 2, . . . . The boundary conditions give

Un
0 = Un

m = 0,(15)

for each n = 1, 2, 3, . . . , and the initial condition implies that

U0
i = h(xi)(16)

for each i = 1, 2, . . . ,m− 1.
Writing (14) in a matrix form we obtain




Un+1
1

Un+1
2
...

Un+1
m−1




=




2(1− λ2) λ2 0 0 . . . 0
λ2 2(1− λ2) λ2 0 . . . 0
...

...
...
...
...

...
0 0 0 0 λ2 2(1− λ2)







Un
1

Un
2
...

Un
m−1


−(17)




Un−1
1

Un−1
2
...

Un−1
m−1



+ k2




fn
1

fn
2
...

fn
m−1




Equations (14) (or (17)) imply that the (n+ 1)-st time step requires values
from n-th and (n− 1)-st time steps. This produces a minor starting
problem since the values for n = 0 are given by equation (16), but the
values for n = 1, which are needed in equation (14) to compute U 2

i must be
obtained from the initial velocity condition

∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ l.

The first approach is to replace (∂u/∂t) by a forward-difference
approximation, which results in



U1
i = U0

i + kg(xi)(18)

A better approximation to u(xi, t1) can be rather easily obtained
particularly when the second derivative of f at xi can be determined.

U1
i = U0

i + kg(xi) +
α2k2

2
h��(xi).(19)

This is an approximation with the local truncation error O(k2) for each
i = 1, 2, . . . ,m− 1.
If h ∈ C4[0, 1] but h��(xi) is not readily available we can use an approximation

U1
i = (1− λ2)h(xi) +

λ2

2
h(xi+1) +

λ2

2
h(xi−1) + kg(xi),(20)

to approximate U 1
i for each i = 1, 2, . . . ,m− 1.

2. The backward implicit Euler’s scheme produces the sequence of
approximate values for the solution by relations

Un−1
i − 2Un

i + Un+1
i

k2
= α2U

n+1
i−1 − 2Un+1

i + Un+1
i+1

h2
+ fn+1

i

If λ = α k
h
, we can write the difference equation as

Un−1 − 2Un + Un+1 = λ2AUn+1 + k2fn+1

or
(I − λ2A)Un+1 = 2Un − Un−1 + k2fn+1.(21)

This equation holds for each n = 1, 2, . . . . The boundary conditions give

Un
0 = Un

m = 0,

for each n = 1, 2, 3, . . . , and the initial condition implies that

U0
i = h(xi)

for each i = 1, 2, . . . ,m− 1. Vector [U 1
1 , U

1
2 , . . . , U

1
m−1] is calculated using

one of the formula (18), (19) or (20).
Writing relation (21) in a matrix form we obtain



B




Un+1
1

Un+1
2
...

Un+1
m−1


 = 2




Un
1

Un
2
...

Un
m−1


−




Un−1
1

Un−1
2
...

Un−1
m−1


+ k2




fn+1
1

fn+2
2
...

fn+1
m−1


(22)

where

B =




1 + 2λ2 −λ2 0 0 . . . 0
−λ2 1 + 2λ2 −λ2 0 . . . 0
...

...
...
...
...

...
0 0 0 0 −λ2 1 + 2λ2




3. The Cranck-Nicolson scheme , as the stable second order accurate
method. It can be obtained informally in the following way

Un+1
j − 2Un

j + Un−1
j

k2
= α2

Un
j−1 − 2Un

j + Un
j

h2
+ fn

j

Un+1
j − 2Un

j + Un−1
j

k2
= α2

Un+1
j−1 − 2Un+1

j + Un+1
j

h2
+ fn+1

j

Taking the average of the above equalities we obtain

Un+1
j − 2Un

j + Un−1
j

k2
= α21

2

�
Un
j−1 − 2Un

j + Un
j

h2
+

Un+1
j−1 − 2Un+1

j + Un+1
j

h2

�
+

f
n+ 1

2
j ,

where f
n+ 1

2
j = 1

2
(fn

j + fn+1
j ).

After some simple transformations we obtain

Un+1 − 2Un + Un−1 =
1

2
λ2AUn +

1

2
λ2AUn+1 + k2fn+ 1

2

or finally
�
I − 1

2
λ2A

�
Un+1 =

�
2I +

1

2
λ2A

�
Un − Un−1 + k2fn+ 1

2(23)

Un+1
0 = Un+1

m = 0,



where A is the earlier introduced matrix in (13). Introducing the matrices

B = I − 1

2
λ2A =




1 + λ2 −1
2
λ2 0 0 . . . 0

−1
2
λ2 1 + λ2 −1

2
λ2 0 . . . 0

...
...

...
... . . .

...
0 0 0 . . . −1

2
λ2 1 + λ2




C = 2I +
1

2
λ2A =




2− λ2 1
2
λ2 0 0 . . . 0

1
2
λ2 2− λ2 1

2
λ2 0 . . . 0

...
...

...
... . . .

...
0 0 0 . . . 1

2
λ2 2− λ2




the Cranck-Nicolson scheme can be written in the matrix form

B




Un+1
1

Un+1
2
...

Un+1
m−1


 = C




Un
1

Un
2
...

Un
m−1


−




Un−1
1

Un−1
2
...

Un−1
m−1


+ k2




f
n+ 1

2
1

f
n+ 1

2
2
...

f
n+ 1

2
m−1




4. The Fourier method

1. We are looking for a solution of the form u(x, t) =
∞�
k=1

ak(t) sin(kπ
x
l
) If

this series is sufficiently fast convergent, then the function u(x, t) can be
considered as the solution of the problem. In order to determine the
coefficients ak(t) we make the observations

utt(x, t) =
∞�

k=1

a��k(t) sin(kπ
x

l
)(24)

uxx(x, t) =
∞�

k=1

−k2π2

l2
ak(t) sin(kπ

x

l
)(25)

f(x, t) =
∞�

k=1

fk(t) sin(kπ
x

l
)(26)

where coefficients fk(t) are obtained from the general formulas for the
Fourier expansion series

fk(t) =

l�

0

f(x, t) sin(kπ
x

l
)dx/

l�

0

sin2(kπ
x

l
)dx =

2

l

l�

0

f(x, t) sin(kπ
x

l
)dx(27)



Now from the differential equation it follows that

∞�

k=1

a��k(t) sin(kπ
x

l
) =

α2

∞�

k=1

−k2π2

l2
ak(t) sin(kπ

x

l
) +

∞�

k=1

fk(t) sin(kπ
x

l
)

Hence we obtain equations

a��k(t) = −k2α2π2

l2
ak(t) + fk(t), k = 1, 2, . . .(28)

which have the following solutions

ak(t) = ak(0) cos

�
kαπ

l
t

�
+

l

kαπ
a�k(0) sin

�
kαπ

l
t

�
+(29)

l

kαπ

t�

0

fk(s) sin

�
kαπ

l
(t− s)

�
ds, k = 1, 2, . . .

The coefficients ak(0) are retrieved from the initial condition as follows

h(x) =
∞�

k=1

hk sin
�
kπ

x

l

�
,

where

hk =

l�

0

h(x) sin
�
kπ

x

l

�
dx/

l�

0

sin2
�
kπ

x

l

�
dx =

2

l

l�

0

h(x) sin
�
kπ

x

l

�
dx,(30)

which gives

ak(0) = hk, k = 1, 2, 3, . . .

the coefficients a�k(0) are retrieved from the initial condition as follows

g(x) =
∞�

k=1

gk sin
�
kπ

x

l

�
,

where



gk =

l�

0

g(x) sin
�
kπ

x

l

�
dx/

l�

0

sin2
�
kπ

x

l

�
dx =

2

l

l�

0

g(x) sin
�
kπ

x

l

�
dx,(31)

which gives

a�k(0) = gk, k = 1, 2, 3, . . .

Remark

In practise, the integrals in (27), (29), (30) and (31) are calculated
approximately by using for example the complex Simpson method

l�

0

f(s)ds ≈ 1

6
h

n�

i=0

�
f(xi) + 4f(xi+ 1

2
) + f(xi+1)

�
(32)

where 0 = x0 ≤ x1 ≤ x2 ≤ . . . xn+1 = l, h = (xi+1 − xi)/n, xi+ 1
2
= xi+xi+1

2
.


