
Numerical methods in differential equations 1

Problem 1. Numerical methods for approximate solution of the initial
value problem

y′(t) = f(t, y(t)), t ∈ [a, b], y(a) = y0.

Taking the step size h we construct a number sequence {yn}, whose
elements are treated as the approximations to the exact values y(tn) :
yn ≈ y(tn) at mesh points tn = a+ n · h, n = 0, 1, 2, . . . , N, N = [b−a

h
].

Examples of such constructions are given below.

1) the explicit Euler method: yn+1 = yn + hf(tn, y
n), y0 = y(a);

2) the implicit Euler method: yn+1 = yn + hf(tn+1, y
n+1), y0 = y(a);

3) the trapezoidal method: yn+1 = yn+
h

2
(f(tn, y

n)+f(tn+1, y
n+1)), y0 = y(a);

4) the midpoint method: yn+1 = yn−1 + 2hf(tn, y
n),

y0 = y(a), y1 = y(a) + hf(a, y(a)).

For each approximate method, we define the error of approximation

e(h) = max
1≤n≤N

|y(tn)− yn|.

One of the main task is an analysis of the approximation error e(h) of the
numerical method. We say that the order or convergence rate of the
method is α0 > 0, if

|e(h)| ≤ C · hα,

for some constant C > 0 and α0 ≤ α for any initial value problem. Use
methods 1) - 4) to find an approximate solution to the following initial
value problem

y′ = y, t ∈ [0, 2], y(0) = 1.

In this case y(t) = et is the exact solution.
1. Do numerical tests with Matlab for various step sizes, for example
h = 0.5, 0.2, 0.1, 0.05, . . . or equivalently n = 4, 10, 20, 40, . . .
2. Compare graphically the exact and approximate solutions.
3. For each method give an estimate of its convergence rate.
This can be done as follows
a) choose two stepsizes, for example h1 = 0.01 and h2 = h1/2 = 0.005,
b) compute the errors e(h1) and e(h2),

c) the ratio r = e(h1)/e(h2) is approximately equal to 2α, whence we
determine α.
4. How does the convergence rate change when the initial values y0 in
methods 1)-3) and y0 i y1 in method 4) are perturbed, for example let you
consider the following examples

1. y0 = y(a) + C · h (C > 0 is some constant), in methods 1) - 3),

2. y0 = y(a), y1 = y(a) + 1
2
hf(a, y(a)), in method 4).

Try to give an explanation of such a behaviour of methods 1)-4).

The Matlab programe should have the following or equivalent structure:

Input data:
a, b, t0, y0, f(t, y),
an exact solution yd(t)

Beginning of the loop:
for n = [10, 20, 40, . . .]

t=linspace(a, b, n+ 1)
h= b−a

n

Determining the vector of
the exact solution values:
ydd(k) = yd(tk), k =
1, 2, . . . , n

Determining the vector of
approximate solution
values:
ya(k) = . . . , k = 1, 2, . . . , n

Collecting errors:
er(h)=max |ya(k)− y(tk)|

Plotting the results:
plot(t, ydd, ’.’, t, ya, ’.’)

End of the loop

Analysis of the error:
er(h)/er(h

2
) = . . .

Problem 2. The initial value problem

y′ = −100y + 100 cos t− sin t, t ∈ [0, π], y(0) = 1

has an exact solution y(t) = cos t. Do tests as in exercise 1 and in each case
determine the range of the step size h, for which computations stabilize.

Basic numerical algorithms for the ordinary differential equations :

1. First order methods

1) the explicit Euler method: yn+1 = yn + hf(tn, y
n), y0 = y(a);

2) the implicit Euler method: yn+1 = yn + hf(tn+1, y
n+1), y0 = y(a);

2. Second order methods

3) the trapezoidal method: yn+1 = yn +
h

2
(f(tn, y

n) + f(tn+1, y
n+1)), y0 = y(a);

4) the midpoint method: yn+1 = yn−1 + 2hf(tn, y
n),

y0 = y(a), y1 = y(a) + hf(a, y(a)).

3. The Runge-Kutta’s methods

3a. the second order method

step yi → yi+1 :

k1 = f(ti, yi)h

k2 = f(ti +
1

2
h, yi +

1

2
k1)h

yi+1 = yi + k2

3b. the fourth order method

step yi → yi+1 :

k1 = f(ti, yi)h

k2 = f(ti +
1

2
h, yi +

1

2
k1)h

k3 = f(ti +
1

2
h, yi +

1

2
k2)h

k4 = f(ti + h, yi + k3)h

yi+1 = yi +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

4. the second order Runge-Kutta method for the system of equations{
x′ = f(t, x, y)

y′ = g(t, x, y)

step
[
xi

yi

]
→

[
xi+1

yi+1

]
:

k1 =

[
k11
k12

]
=

[
f(ti, xi, yi)h
g(ti, xi, yi)h

]

k2 =

[
k21
k22

]
=

 f(ti +
1
2
h, xi + k11, yi + k12)h

g(ti +
1
2
h, xi + k11, yi + k12)h


[
xi+1

yi+1

]
=

[
xi

yi

]
+

[
k21
k22

]

