
Numerical methods in differential equations 2 (21 marca 2025)

Solutions to the problems below should be prepared in the form of Matlab
or Python codes with attached flowcharts explaining your algorithms.

Problem 1. Given the initial value problem

y′ =
1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1

with exact solution

y(t) = −1/t.

a) Use Euler’s methods (explicit and implicit) with h = 0.05 to
approximate the solution and compare it with the actual values of y.
b) Use the results obtained in part (a) and linear interpolation to
approximate the following values of y and compare them to the actual
values.

i) y(1.04), ii) y(1.55), iii) y(1.97).

c) Determine numerically the value of h necessary for max
0≤i≤n

|y(ti)− yi| ≤ 0.1.

Problem 2. Obtain an approximation to the solution of

y′ = 1 + t sin(ty), 0 ≤ t ≤ 2, y(0) = 0

using the explicit Euler’s method with h = 0.1, 0.05, 0.025, 0.0125, 0.00625
(equivalently n = 20, 40, 80, 160, 320). Can the error bound be obtained
using an estimate of the convergence rate of the explicit Euler’s method?

Problem 3. Use the Runge-Kutta method of order two for the initial value
problem

y′ = −y + t+ 1, 0 ≤ t ≤ 1, y(0) =
1

3

with h = 0.1, 0.05, 0.025, 0.0125.
a) Find the exact solution y(t).
b) Let yi+1 = yi + Φ(ti, yi, h), where Φ(ti, yi, h) denotes all the
transformations needed to get yi+1 from yi described in the Runge-Kutta
method. Consider the local truncation error
eil(h) = y(ti+1)− y(ti)− Φ(ti, y(ti), h) for chosen values of h. Are the results
consistent with the differential problem?



Problem 4. Solve the following ”stiff”initial value problems using

(i) explicit Euler’s method,
(ii) implicit Euler’s method,
(iii) Runge-Kutta fourth-order method
(iv) the trapezoidal method.

a) y′ = −5y, 0 ≤ t ≤ 1, y(0) = e.

Use h = 0.1 and compare the result to the actual solution y(t) = e1−5t.

b) y′ = −7(y − t) + 1, 0 ≤ t ≤ 1, y(0) = 3.

Use h = 0.1 and compare the result to the actual solution y(t) = t+ 3e−7t.

c) y′ = −20(y − t2) + 2t, 0 ≤ t ≤ 1, y(0) =
1

3
.

Use h = 0.05 for 0 ≤ t ≤ 0.2 and h = 0.1 for 0.2 ≤ t ≤ 1 and compare the
result to the actual solution y(t) = t2 + 1

3
e−20t.

d) y′ = −20y + 20 sin t+ cos t, 0 ≤ t ≤ 1, y(0) = 1.

Use h = 0.01 for 0 ≤ t ≤ 0.2 and h = 0.05 for 0.2 ≤ t ≤ 1 and compare the
result to the actual solution y(t) = e−20t + sin t.

e) y′ = (50/y)− 50y, 0 ≤ t ≤ 1, y(0) =
√
2.

Use h = 0.05 for 0 ≤ t ≤ 0.2 and h = 0.1 for 0.2 ≤ t ≤ 1 and compare the
result to the actual solution y(t) = [1 + e−100t]1/2.

f)

{
u′
1 = 32u1 + 66u2 +

2
3
t+ 2

3
, 0 ≤ t ≤ 1, u1(0) =

1
3
;

u′
2 = −66u1 − 133u1 − 1

3
t− 1

3
, 0 ≤ t ≤ 1, u2(0) =

1
3
.

Use h = 0.01 for 0 ≤ t ≤ 0.1 and h = 0.1 for 0.1 ≤ t ≤ 1 and compare the
result to the actual solution

u1(t) =
2

3
t+

2

3
e−t − 1

3
e−100t, u2(t) = −1

3
t− 1

3
e−t +

2

3
e−100t.

‘compare the result to the actual solution’ means that you should compute
max
1≤i≤n

|y(ti)− yi| and deduce the convergence rate of the method. The



following formulas are useful in an application of the implicit Euler’s
method given in Problem 4.

a) yn+1 = yn + h(−5yn+1), yn+1 =
1

1 + 5h
yn.

b) yn+1 = yn + h(−7(yn+1 − tn+1) + 1),

yn+1 =
1

1 + 7h
(yn + h(−7(−tn+1) + 1))

c) yn+1 = yn + h(−20(yn+1 − t2n+1) + 2tn+1),

yn+1 =
1

1 + 20h
(yn + h(−20(−t2n+1) + 2tn+1))

d) yn+1 = yn + h(−20yn+1 + 20 sin tn+1 + cos tn+1),

yn+1 =
1

1 + 20h
(yn + h(20 sin tn+1 + cos tn+1))

e) yn+1 = yn + h((50/yn+1)− 50yn+1),

(1 + 50h)y2n+1 − ynyn+1 − 50h = 0

yn+1 =
yn ±

√
y2n + 4 · 50h · (1 + 50h)

2(1 + 50h)

f) un+1 = un + h(Aun+1 + f(tn+1)), (Id− hA)un+1 = un + hf(tn+1)

A =

[
32 66
−66 −133

]
, f(t) =

[
2
3
t+ 2

3

−1
3
t− 1

3

]

Problem 5. In a circuit with impressed voltage U , and resistance R,
inductance L, capacitance C in parallel, the current i



satisfies the differential equation

di

dt
= C

d2U

dt2
+

1

R

dU

dt
+

1

L
U.

Suppose C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is
given by

U(t) = e−0.06πt sin(2t− π).

If i(0) = 0, find the current i for the values t = 0.1j, j = 0, 1, . . . , 100 using
Euler’s methods.

Problem 6. The following 2-step explicit formula

yn+1 = −4yn + 5yn−1 + h(4f(tn, yn) + 2f(tn−1, yn−1))

applied to the problem y′ = f(t, y), y(t0) = y0 has the theoretical order of
accuracy p = 3. Suppose we solve the initial value problem

y′ = 0, t ∈ [0, 1], y(0) = y0

(an exact solution y(t) ≡ y0) using this method with the step size h = 0.01.
Making plots of approximate solutions in the case of the following series of
initial values
a) y0 = y1 = 1, y0 = y1 = 1.5, y0 = y1 = 1.75, y0 = y1 = 1.875, . . .
b) y0 = y1 = 1.3, y0 = y1 = 1.6, y0 = y1 = 1.7, . . .
we observe different behavior of approximate solutions. Try to explain the
observed differences. Let you notice that in this particular case your
algorithm is independent of the step value h.



Problem 7. Suppose we solve the initial value problem

y′ = −100(y − cos(t))− sin(t), y(0) = 1, t ∈ [0, 1],

by explicit and implicit Euler’s methods. The exact solution of this problem
is y(t) = cos(t). In both those cases determine the least value of the step
size h for which the approximate solution at t = 1 differs from y(1) less
than by ϵ = 0.001.

Problem 8. The initial value problem[
x′

y′

]
=

[
998 1998
−999 −1999

] [
x
y

]
, x(0) = 1, y(0) = 0

has a solution x(t) = 2e−t − e−1000t, y(t) = −e−t + e−1000t. Solve it
numerically using explicit and implicit Euler’s methods. In each case
determine the least value of the step size h when the approximation error at
t = 1 is less than ϵ = 0.0001.

Problem 9. Consider the following system of differential equations{
ẋ = ax− by

ẏ = bx+ ay

a) Let a = 0. For each b = 1, 0.5, 0.1, and 0.05 draw the slope field of the
system (you can use a Matlab command quiver ).

b) Let a = 0, b = 1. Draw approximate solutions for initial value
[x(0), y(0)] = [0, 1] obtained by the explicit Euler method on the interval
t ∈ [0, 4π]. Do this exercise for a number of step sizes of h, for example
h = 0.1, 0.05, 0.025, 0.0125.

c) The exact solution in b) is x(t) = −eat sin(bt), y(t) = eat cos(bt). Discuss
the order of accuracy of the mehod.

d) Let a = 0.2 and a = −0.2. Repeat exercises b) and c).

Problem 10. Limit circle. Draw a number of approximate solutions to the
following system of equationsẋ = −y + x

[
1− (x2 + y2)

1
2

]
ẏ = x+ y

[
1− (x2 + y2)

1
2

]
.

1. Draw the slope field for the system of equations.
2. You should observe that the system has an exact solution (x(t), y(t)
satisfying relation x2(t) + y2(t) = 1.



Problem 11. It is know that equation ẍ+ ẋ− sign(ẋ) + x = 0 has a
periodic solution (x(t), y(t)), i.e. there exists a constant T > 0 such that
x(t+ T ) = x(t), y(t+ T ) = y(t) for every t ∈ R. Try to justify this
hypothesis.
a) Draw a number of approximate solutions obtained by the Runge-Kutta
method illustrating existence of that periodic soluion.{

ẋ = y

ẏ = −x− y + sign(y)

Problem 12. Given the initial value problem

y′ =
2

(2t+ 1)2
− y

2t+ 1
− y2, 1 ≤ t ≤ 2, y(1) = −1

3
;

with exact solution

y(t) = − 1

2t+ 1
.

a) Using Euler’s explicit and implicit methods construct aproximate
solutions to this problem. In both cases take the stepsize h = 0.02. Next,
compare them with the actual values of y by plotting approximate and
exact solutions in one figure.
b) Use the approximate solutions obtained in part (a) and linear
interpolation to approximate the following values of y:

i) y(1.03), ii) y(1.55), iii) y(1.97).

In each case calculate the error of approximation.
c) The error of approximation is defined as e(h) = max

0≤i≤n
|y(ti)− yi|, where h

is a stepsize of discretization. In the case of Euler’s explicit and implicit
methods one expects that e(h) ≤ C · h, where C is a constant independent
of h. Confirm this statement performing the following numerical test: for
the sequence of stepsizes h : h0, h0/2, h0/4,. . . , h0/2

i, . . . , 1 ≤ i ≤ n (in
calculations take h0 = 0.2 and n = 10) observe the ratios of the
corresponding approximation errors e(hi+1)/e(hi), i = 1, 2, . . . , n− 1. You
should note that the sequence of ratios stabilizes at value equal
approximately to 2.


