
Lecture 2

I. The error estimate for the Euler explicit method applied to the initial value problem

Exact problem

(1)

{
y′ = f(t, y)

y(t0) = y0

Assumptions:

1. the function f(t, y) is regular (i.e. it has continuous derivatives
ft(t, y), fy(t, y), ftt(t, y), fty(t, y), fyy(t, y)), in particular it satisfies
the Lipschitz condition

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

for all t, y1, y2, where L > 0 is some constant.

2. let
M = max

(t,y)
{|f(t, y)|, |ft(t, y)|, |fx(t, y)|, |ftt(t, y)|, |fxt(t, y)|, |fxx(t, y)|}

We define the approximate problem as follows:

Find a series of approximate values using the explicit Euler algorithm

y0, yi+1 = yi + hf(ti, yi), i = 0, 1, 2, . . . , n− 1

The global error of approximation is defined as follows

e(h) = max
1≤i≤n

|y(ti)− yi|.

To analyze e(h) we consider the sequence of the errors at the individual
grid points

ei = y(ti)− yi, i = 1, 2, . . . , n,

Then by Taylor’s formula* (up to the first term) we get

y(ti+1) = y(ti) + hy′(ti) +R(h),(2)

where |R(h)| ≤ Ch2,



C =
1

2
max

ti≤t≤ti+1

|y′′(t)| = 1

2
max

ti≤t≤ti+1

|ft + f · fy| ≤
1

2
(M +M2) ≤ M2

y′′ = (y′)′ =
d

dt
f(t, y) = ft(t, y) + y′fy(t, y) = ft + f · fy

It follows from the differential equations that y′(ti) = f(ti, yi), therefore

y(ti+1) = y(ti) + hf(ti, yi) +R(h)(3)

* - Taylor’s formula up to n− th term has a form:

y(t+ h) = y(t) + h
1!
y′(t) + h2

2!
y′′(t) + · · ·+ hn

n!
y(n)(t) +Rn(h),

where Rn(h) is the remainder, for which we have an estimate
|Rn(h) ≤ Chn+1.
Since

(4) yi+1 = yi + hf(ti, yi),

it follows from (??) and (??) that

(5) ei+1 = y(ti+1)− yi+1 = (y(ti)− yi) + h(f(ti, y(ti))− f(ti, yi)) +R(h).

Since f satisfies the Lipschitz condition

|f(ti, y(ti))− f(ti, yi)| ≤ L|y(ti)− yi|,

from (??) we get inequality

(6) |ei+1| ≤ (1 + Lh)|ei|+ Ch2, i = 0, 1, 2, . . . , n,

where C > 0 is some constant independent of h. We discuss this inequality
beginning with the following auxilliary lemma

Lemma 1.

Let the sequence {ei} satisfy

(7) |ei+1| ≤ A|ei|+B, i = 0, 1, 2, . . .

where A,B > 0 are some constants. Then for each ei we have the following
explicit estimate

(8) |ei| ≤ Ai|e0|+B
Ai − 1

A− 1
, i = 0, 1, 2, . . .



Proof of lemma. The proof is by induction. First we observe that

|e1| ≤ A|e0|+B.

Assuming (??) for i, for i+ 1 we get inequality

|ei+1| ≤ A|ei|+B ≤ A

(
Ai|e0|+B

Ai − 1

A− 1

)
+B = Ai+1|e0|+B

Ai − 1

A− 1
.

An inductive argument ends the proof.

Now we apply lemma 1 to our sequence, where e0 = 0, A = 1 + Lh and
B = Ch2. Then we get

ei ≤
(1 + hL)i − 1

hL
Ch2 ≤ C

L
(1 + hL)nh, 0 ≤ i ≤ n.

Since

t0 < t1 < · · · < tn = T, nh = T − t0

we have

(1 + hL)n =
[
(1 + hL)

1
hL

]nhL
≤ exp((T − t0)L),

The last inequality follows from the known inequality (1 + x)
1
x ≤ e for

x > 0. Finally we get the estimate of the global error for the explicit Euler
method

(9) e(h) = max
0≤i≤n

|ei(h)| ≤
C

L
e(T−t0)L h = C1h.

Let us compare the global error (??) for the explicit Euler method with the
local error. For the latter error we have an estimate

(10) eil(h) = |y(ti+1)−y(ti)−hf(ti, y(ti))| = |y(ti+1)−y(ti)−hy′(ti)| = |r(h)|

where r(h) is the remainder in Taylor’s formula, which satisfies the
inequality |r(h)| ≤ Ch2. Hence it follows that

el(h) = max
0≤i≤n

(eil(h)) ≤ Ch2.

Generally, for difference methods between local and global errors we usually
have the following relation



(11) el(h) ≤ chp+1 and e(h) ≤ chp,

where p > 0 is the order of the method.
III Practical methods of higher order - the Runge-Kutta’s methods

1. The method of the second order

yi+1 : k1 = f(ti, yi)h

k2 = f(ti +
1

2
h, yi +

1

2
k1)h

yi+1 = yi + k2

2. The method of the fourth order

yi+1 : k1 = f(ti, yi)h

k2 = f(ti +
1

2
h, yi +

1

2
k1)h

k3 = f(ti +
1

2
h, yi +

1

2
k2)h

k4 = f(ti + h, yi + k3)h

yi+1 = yi +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

Example 1. The second order Runge-Kutta method for the system of
equations{

x′ = f(t, x, y)

y′ = g(t, x, y)



[
xi+1

yi+1

]
: k1 =

[
k11
k12

]
=

[
f(ti, xi, yi)h
g(ti, xi, yi)h

]

k2 =

[
k21
k22

]
=

 f(ti +
1
2
h, xi +

1
2
k11, yi +

1
2
k12)h

g(ti +
1
2
h, xi +

1
2
k11, yi +

1
2
k12)h


[
xi+1

yi+1

]
=

[
xi

yi

]
+

[
k21
k22

]

A practical guide for verification of the order p > 0 in (??) of the
convergence rate of the algorithm.

1. Asume that e(h) ≈ Chp.
2. Let choose a step h0 for example h0 = 0.05 and perform numerical tests
for a number of step sizes of h, for example h = h0, h0/2, h0/4, . . . , h0/2

5.
3. For each value of h, determine errors: e(h0), e(h0/2), e(h0/4),. . . e(h0/2

5)
of the approximation of the exact solution y(t) by an approximate solution
yh.
4. If in point 3. the exact solution y(t) is not available, you can take
instead the approximate solution yhobtained for the last value of step h.
5. It follows from our assumption that

e(h0) ≈ Chp
0, e(h0/2) ≈ Chp

02
−p, e(h0/4) ≈ C2−2php

0, . . .

e(h0/2
k) ≈ C2−kphp

0,

So we may expect that

e(h0/2
i)/e(h0/2

i+1) ≈ 2p, i = 0, 1, 2, . . . ,

which is verifiable by computation. Hence we retrieve the value of p.
6. To illustrate results you can draw the points

Pk = (− ln(h0/2
k),− ln(e(h0/2

k)).

Since

− ln(e(h)) ≈ p ln(−h) + ln(−C),

we expect that points Pk are arranged along the line y = p · x+ b. The
coefficients p and b can be retrieved by using a Matlab command ’polyfit’.


