Lecture 3
Topics
1. Determining periodic solutions

2. Finite difference method for the approximate solution of boundary value problems for
second order differential equations



Determining the periodic solutions.
Let us consider the system of differential equations

7= f(:v,y)
W {y’ 9(x,y)

where a pair of functions (z(t),y(t)), t € R is a solution. We assume that the functions f i
g are regular. Under these assumptions any initial value problem (z(0) = z,y(0) = yo) for
the system has a unique solution. Hence it follows that the graphs of two solutions
either concide or are disjoint.

Let AB be a segment in the plane. For any point S € AB (the start point) we construct a
solution to the system such that (z(0),y(0)) = S.

We continue this construction until the solution reaches the segment once more. The point,
where the solution crosses the segment is denoted by E (the end point).

If we are able to construct two solutions with the start points S, Sy and the end points
FEy, Es respectively in the order as in the picture below, then there exists a solution with a
start point S € AB, whose end point £ = S. This solution is a closed curve and
consequently it is a sought periodic solutions, i.e. there exists 7" > 0 such that
x(t+T)==a(), yt+T)=y(t) for t € R.




Example. Let you detect experimentaly a periodic solution to the second order equation
" 4+ x —sign(a’) + 2’ = 0.

Solution. First we transform the equation to the system of equations

=y
? {y’ = —x +sign(y) — y.

We choose the segment AB, where A = (0,0.5), B = (0,2.2) and construct a number of
approximate solutions to initial value problems with initial points S € AB. We continue
the construction until the solution reaches the segment AB. The approximate solution are
constructed by the second order Runge-Kutta’s method.
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Our aim is to find two solutions for which the following order of the points in the segment:
A, Sy, E, Ey, Sy, B is reached. We choose two solutions corresponding to the initial points
S1=(0,1) and Sy = (0,2).

It follows from the theory of differential equation (the Poincare-Bendixon theorem) that
there exists a periodic solution with the initial point S in the segment F;FEs.
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The finite difference method for the approximate solution of the boundary
value problem

' +a@y = 92), T € (a,b)
@) {mw—a y(0) = B

where ¢(x) > 0 and g(z) are continuous.
It is known that such a problem has a unique solution.

The construction of the approximate solution.
Let us consider the partition: a = xy <21 <...ony =b, ; = a+ jh, h = b_T"“

Algorithm

We construct a sequence {y;}, whose elements are considered as approximate values
yi =~ y(x;),i=0,1,2..., N by the following algorithm

Yo — &
1 )
—ﬁ(yi—l — 2t yn) T @t = g, =1,2,...,N—1

yn =
or

2+ Q1h2)yl —yo = g1h* + a,
—Yi—1 + 2 — Yiy1 + Qihzyi = 9ih27 1=2,3,...,N =2
—yn—a+ (24 QN—1h2)yN—1 = gN—1h2 + 3,

To simplify calculations, we introduce

[2 +qh2 -1 0 0 0 |
1 24¢h? -1 .. 0 0
@ A 0 -1 24 qh?® -1 0
0 0 0 —1 24 qn_oh? —1

L 0 0 0 0 —1 2+qN_1h2_




J=1[y, 2, yn-1]",
b= [glh2 + a, th27 © 0o 7gN—2h27 9N—1h2 = 6]T

As a result we obtain a system of the linear equations to solve

(5) Ay =0b.

The existence of its solutions is guaranted by the following properties of A.
The matrix A is positively definite (for sufficiently small h > 0) i.e. one proves that the
inequality 27 - Az > 0 is satisfied for any vector x # 0, x € RN~

Hence it follows that there exists no vector x # 0 such that Ax = 0, in other words the
matrix A is nonsingular (det A # 0).

Corollary. The approximate problem has exactly one solution for sufficiently small h > 0.



The error estimate is given in the following theorem

Twierdzenie 1. If q(z) > 0, then the exact boundary value problem (1) has ezxactly one
solution y(x). Similarly the approximate problem (3) has exactly one solution (for
sufficiently small h > 0). Moreover, if y(x) € C*[a,b], then the following estimate holds

Mh?
24

ly(zi) — il < (z; —a)(b— ;)

fori=1,2,...,N — 1, where M = sup |y (x)|.



Motivation for the form of the finite difference algorithm

As an approximation to y”(x;), we take

A2y(z:) = Y(Tip1) — 21/}5;&') + y(2;1)

Let us assume y(x) € C*[a, b] and let us estimate the error 7;(y) = y”(x;) — A?y(x;). Using
the Taylor’s formula we obtain

h? h3 h*
y(z; £ h) = y(z;) £ hy'(z;) + ?y”(xi) + gy”/(x,») + Zy(‘l)(xi + @Zih), 0< @f < 1.
Hence
h2 h2
AQQ(%) = y”(ﬂh‘) + ﬂ[?/w (% + @;rh) + 9(4) (33z - @i_h)] = y/,(-Ti) + Ey(4)(xi + @ih)
and finally
h2
Ti(y) = y”(xz‘) - AQ?J(%) = —Ey(4)($i I @ih)a |@z| < 1.

To summarize, since y”(x;) = A%y(z;) + 7:(y), we observe that the following relations hold

y(zo) = a;
ulEim) - 2‘1’,5?) F0) | gyl = o) +mly) = L2 N -1
ylen) =



The finite difference method for the approximate solution of more general
boundary value problems

(6) {_y// +p(x)y + q(x)y = g(z), =z € (a,b)
yla)=a yb) =48

Assuming this equation has a unique solution we descritize the problem similarly as
problem and obtain

Yo =«
1 Yitl — Yi—1 .
—ﬁ(yi—l — 2y + Yit1) +piHTZ +qyi =9, 1=12,...,.N—-1

yn = f

or

2+ @h®)yr — (1 = p1h/2)ys = g1h® + (1 + p1h/2)e,
—(L+pih/2)yi—1 + (2 + ¢ih®)yi — (1 — pih/2)yis1 = gih?, i=2,3,...,N —2
—(L4+pn-1h/2)yn—2 + (2 + gn-1h*)yn—1 = gn—1h* + (1 — pn—_1h/2)3,

where p; = p(z;), ¢; = q(x;) and g; = (g(x;), i =1,2,..., N. To simplify the algorithm, we

introduce

2 + q1 h? —(1 —p1h/2) 0 0 0
—(1+4 pah/2) 2 + goh? —(1 — pah/2) 0 0
0 —(1 4+ p3h/2) 2 + q3h? —(1 — p3h/2) 0
A= . .
0 0 0 —(1+pNn—2h/2) 2+ gy _2h? —(1—pn—_2h/2)
0 0 0 0 —(1+pN_1h/2) 24 qgn_1h

g = [y17y27 cee 7yN71]Ta
I_) [glh2 + (1 + plh/2)aa 92h27 ce 7gN*2h25 ngth + (1 - prlh/Q)ﬁ]T

As a result we obtain a system of the linear equations to solve

(7) Ay=b.



