
Lecture 3

Topics

1. Determining periodic solutions

2. Finite difference method for the approximate solution of boundary value problems for
second order differential equations
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Determining the periodic solutions.
Let us consider the system of differential equations{

x′ = f(x, y)

y′ = g(x, y)
(1)

where a pair of functions (x(t), y(t)), t ∈ R is a solution. We assume that the functions f i
g are regular. Under these assumptions any initial value problem (x(0) = x0, y(0) = y0) for
the system (1) has a unique solution. Hence it follows that the graphs of two solutions
either concide or are disjoint.

Let AB be a segment in the plane. For any point S ∈ AB (the start point) we construct a
solution to the system such that (x(0), y(0)) = S.
We continue this construction until the solution reaches the segment once more. The point,
where the solution crosses the segment is denoted by E (the end point).
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If we are able to construct two solutions with the start points S1, S2 and the end points
E1, E2 respectively in the order as in the picture below, then there exists a solution with a
start point S ∈ AB, whose end point E = S. This solution is a closed curve and
consequently it is a sought periodic solutions, i.e. there exists T > 0 such that
x(t+ T ) = x(t), y(t+ T ) = y(t) for t ∈ R.
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Example. Let you detect experimentaly a periodic solution to the second order equation
x′′ + x− sign(x′) + x′ = 0.

Solution. First we transform the equation to the system of equations{
x′ = y

y′ = −x+ sign(y)− y.
(2)

We choose the segment AB, where A = (0, 0.5), B = (0, 2.2) and construct a number of
approximate solutions to initial value problems with initial points S ∈ AB. We continue
the construction until the solution reaches the segment AB. The approximate solution are
constructed by the second order Runge-Kutta’s method.
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Our aim is to find two solutions for which the following order of the points in the segment:
A, S1, E1, E2, S2, B is reached. We choose two solutions corresponding to the initial points
S1 = (0, 1) and S2 = (0, 2).
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It follows from the theory of differential equation (the Poincare-Bendixon theorem) that
there exists a periodic solution with the initial point S in the segment E1E2.
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The finite difference method for the approximate solution of the boundary
value problem

(3)

{
−y′′ + q(x)y = g(x), x ∈ (a, b)

y(a) = α y(b) = β

where q(x) ≥ 0 and g(x) are continuous.
It is known that such a problem has a unique solution.

The construction of the approximate solution.

Let us consider the partition: a = x0 < x1 < . . . xN = b, xj = a+ jh, h = b−a
N

.

Algorithm

We construct a sequence {yi}, whose elements are considered as approximate values
yi ≈ y(xi), i = 0, 1, 2 . . . , N by the following algorithm

y0 = α

− 1

h2
(yi−1 − 2yi + yi+1) + qiyi = gi, i = 1, 2, . . . , N − 1

yN = β

or

(2 + q1h
2)y1 − y2 = g1h

2 + α,

−yi−1 + 2yi − yi+1 + qih
2yi = gih

2, i = 2, 3, . . . , N − 2

−yN−2 + (2 + qN−1h
2)yN−1 = gN−1h

2 + β,

To simplify calculations, we introduce

(4) A =



2 + q1h
2 −1 0 . . . 0 0

−1 2 + q2h
2 −1 . . . 0 0

0 −1 2 + q3h
2 −1 . . . 0

...
...

...
...

...
...

0 0 0 −1 2 + qN−2h
2 −1

0 0 0 0 −1 2 + qN−1h
2


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ȳ = [y1, y2, . . . , yN−1]
T ,

b̄ = [g1h
2 + α, g2h

2, . . . , gN−2h
2, gN−1h

2 + β]T

As a result we obtain a system of the linear equations to solve

(5) Aȳ = b̄.

The existence of its solutions is guaranted by the following properties of A.

The matrix A is positively definite (for sufficiently small h > 0) i.e. one proves that the
inequality xT · Ax > 0 is satisfied for any vector x ̸= 0, x ∈ RN−1.

Hence it follows that there exists no vector x ̸= 0 such that Ax = 0, in other words the
matrix A is nonsingular (detA ̸= 0).

Corollary. The approximate problem has exactly one solution for sufficiently small h > 0.
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The error estimate is given in the following theorem

Twierdzenie 1. If q(x) ≥ 0, then the exact boundary value problem (1) has exactly one
solution y(x). Similarly the approximate problem (3) has exactly one solution (for
sufficiently small h > 0). Moreover, if y(x) ∈ C4[a, b], then the following estimate holds

|y(xi)− yi| ≤
Mh2

24
(xi − a)(b− xi)

for i = 1, 2, . . . , N − 1, where M = sup |y(4)(x)|.
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Motivation for the form of the finite difference algorithm

As an approximation to y′′(xi), we take

∆2y(xi) =
y(xi+1)− 2y(xi) + y(xi−1)

h2

Let us assume y(x) ∈ C4[a, b] and let us estimate the error τi(y) = y′′(xi)−∆2y(xi). Using
the Taylor’s formula we obtain

y(xi ± h) = y(xi)± hy′(xi) +
h2

2
y′′(xi)±

h3

3!
y′′′(xi) +

h4

4!
y(4)(xi ±Θ±

i h), 0 < Θ±
i < 1.

Hence

∆2y(xi) = y′′(xi) +
h2

24
[y(4)(xi +Θ+

i h) + y(4)(xi −Θ−
i h)] = y′′(xi) +

h2

12
y(4)(xi +Θih)

and finally

τi(y) = y′′(xi)−∆2y(xi) = −h2

12
y(4)(xi +Θih), |Θi| < 1.

To summarize, since y′′(xi) = ∆2y(xi) + τi(y), we observe that the following relations hold

y(x0) = α;

−y(xi−1)− 2y(xi) + y(xi+1)

h2
+ q(xi)y(xi) = g(xi) + τi(y), i = 1, 2, . . . , N − 1

y(xN) = β
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The finite difference method for the approximate solution of more general
boundary value problems

(6)

{
−y′′ + p(x)y′ + q(x)y = g(x), x ∈ (a, b)

y(a) = α y(b) = β

Assuming this equation has a unique solution we descritize the problem similarly as
problem (3) and obtain

y0 = α

− 1

h2
(yi−1 − 2yi + yi+1) + pi

yi+1 − yi−1

2h
+ qiyi = gi, i = 1, 2, . . . , N − 1

yN = β

or

(2 + q1h
2)y1 − (1− p1h/2)y2 = g1h

2 + (1 + p1h/2)α,

−(1 + pih/2)yi−1 + (2 + qih
2)yi − (1− pih/2)yi+1 = gih

2, i = 2, 3, . . . , N − 2

−(1 + pN−1h/2)yN−2 + (2 + qN−1h
2)yN−1 = gN−1h

2 + (1− pN−1h/2)β,

where pi = p(xi), qi = q(xi) and gi = (g(xi), i = 1, 2, . . . , N . To simplify the algorithm, we
introduce

A =



2 + q1h
2 −(1 − p1h/2) 0 . . . 0 0

−(1 + p2h/2) 2 + q2h
2 −(1 − p2h/2) . . . 0 0

0 −(1 + p3h/2) 2 + q3h
2 −(1 − p3h/2) . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 −(1 + pN−2h/2) 2 + qN−2h
2 −(1 − pN−2h/2)

0 0 0 0 −(1 + pN−1h/2) 2 + qN−1h
2



ȳ = [y1, y2, . . . , yN−1]
T ,

b̄ = [g1h
2 + (1 + p1h/2)α, g2h

2, . . . , gN−2h
2, gN−1h

2 + (1− pN−1h/2)β]
T

As a result we obtain a system of the linear equations to solve

(7) Aȳ = b̄.
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