Lecture 4
Topics

1. The Ritz-Galerkin and the finite element method for the boundary value problem for
the second order differential equations



The Ritz-Galerkin-Rayleigh method for the problem

(1) —(p(z)y') + q(x)y = f(z), = € (a,b)
y(a) =0, y(b) =0.

Assumptions: p(z) € C'[a,b], p(z) > po > 0, q(z), f(x) € Cla,b], g(z) > 0. Under these
assumptions the problem has a unique solution.

1. Standard (or regular, classical) solutions. The function y(z) € C?[a, b] which satisfies
all the conditions in the problem above is a standard (regular) solution.

2. Weak solutions.
The introductory observation. Let
v € Ca,b], v(a) =0, v(b) =0 (we will write v € H(a, b))

Then a function y(x) € C?[a, b] is a solution of (1), if and only if
b b

@ [ 0y +a@lds = [ fods

for every v € Hj(a,b). Since

b b b
/ —(p(x)y')'vde = —p(x)y'v; + / p()y'v'de = / p(z)y'v'dz,

condition can be replaced by

® [ v+ awpede = [ ot

This relation is a basis for the definition of a weak solution.

Definition. The function y € H}(a,b) is a weak solution of (1)) if and only if the condition
holds for every v € H}(a,b). Note that y is required to be only a C! regular function, so
it may not satisfy the boundary problem in a classical sense.

For any v, w € Hj(a,b) we define

B = | b + g@yuvda, (f,v) = / ’ fuds,



We observe that

B(u,v) = B(v,u)

B(auy + Bug,v) = aB(uy,v) + 8B (ug,v)
B(u,u) > 0 for u # 0.

. (fyavy + Pug) = a(f,v1) + B(f, v2)

Hence B(u,v) is a bilinear form and (f,v) is a linear one. Using these forms we can define
a weak solution y € H}(a,b) to the original problem as a function satisfying

oW oo e

B(y,v) = (f,v) for every v € Hj(a,b).



3. Variational solutions.

We define the energy functional

B(u) = 5B(u,0) - (),

for every u € Hy(a,b).

and the variational solution of the problem

Definition. The function y € H}(a,b) is a variational solution of (1) if and only if
E(y) = min E(u).

ueH} (a,b)

A comparison of the weak and variational solutions is given in the following theorem

Twierdzenie 1. The function y € Hi(a,b) is a variational solution if and only if it is a
weak solution to the problem (1).

Proof. First we assume that y(x) is a variational solution. Then for any v € H}(a,b) and
t € R we have y + tv € H} and

B(y) < By + tv) %B(y—l—tv,y+tv)—(f,y+tv) _

SB(,y) — (F.9) +1(Bly,0) — (f,0) + £ B(o,0) =

E(y) +t(B(y,v) = (f.v)) +#*B(v,v).

Hence, we have

0 <t(B(y,v) — (f,v)) + *B(v,v) < t(B(y,v) — (f,v) +1B(v,v))
Let us consider t — 0+4. Then we have

B(y,v) — (f,v) > —tB(v,v) with —tB(v,v) — 0.

Let us consider t — 0—. Then we have

B(y,v) — (f,v) < —tB(v,v), with —tB(v,v) — 0.

Finally, we get

b b
B(y,v) = (f,v) or / p(a)y/v’ + q(a)yode = / fud,
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for any v € H}(a,b). This means that y(z) is a weak solution.

Now we assume that y(z) is a weak solution, i.e.

B(:y?v)_(va):O'

Then for any w € Hg we also have v = w — y € H} and

—_

s 2

E(w) = By +0) = 3B(0.9) — (f.9) + (Blurv) = (f.0))+ 5 Bl0.0) =

N J/
-

|

B(y)+ 0+ 5B(,0) 2 B(y)

which means that the energy functional reaches its minimum at y(z). This ends the proof.



Construction of an approximate solution.

Let V,, C H} be a linear finite dimensional subspace with basis functions ¢;(z), ¢a(x), ...
¢m (). We define an approximate solution as a function

(4)  ym(z) = Z@i@(iﬁ) € Vm CHy

such that

(5)  B(Ym,vm) = (f;vm),

is satisfied for any v,,(x) € V,, or in other words:
Ym 1S a weak solution in V,,,.

Let you compare definition of the approximate solution with defifinition of the exact one:

B(y,v) = (f,v) for every v € Hj(a,b).

Solution of an approximate problem.

Our aim is to determine coefficients oy, ag,. .., a.,. Taking in (5)) as v,,(x), subsequently
the basis functions ¢;(x), i = 1,2, ..., m we obtain the system of the linear equations
m
(6) Zaijaj:fi, i:1,2,...,m
j=1
where

Qij; = B(¢z’,¢j) = / p(x)gb;(x)gb;(x) + q(x)gzﬁi(x)qu(x)dx,

b
£ = (f.6;) = / foyd.

We will write the equations above in the following matrix form



aixz ai2 ... Qim aq f1
ag1 Q22 ... Qo2m (&%) f2

N e

Al Wm2 - G | | Cm fm

Matrix [B(¢;, ¢;)] is called a stiffness matrix and vector (fi, fa, ..., fm) is called a load
vector.

Equivalently, system of equations (@ (or ) can be obtained also in the following way.
We observe that g, in satisfies the variational condition

(8) E(ym)= min E(vy,).

Vm EVim

Formula is expressed in terms of functions y,, and v,,. Our aim is to express it in terms
of numbers. Since

m
vm(7) =Y Bidhi()
i=1
where (1, fa,..., B are some coefficients, we have

B(v) = B(Br, o) = 5 By ) — () =

1 n n
5 Z aijﬁzﬂj - ; fiBi

ij=1

Now, variational formula (8)) can be rewritten as follows

(9) E(Ofl,()ég,...,()ém> :B mianE(ﬁl,ﬁg,...,ﬁm)

The solution of the above ekstremum problem is obtained by analytic methods. Since

OF 0 (1« n m
o5 = 0%, (5;%% —;m> S
hence it follows that F(fS1, 52, ..., Bn) reaches its minimum at (o, g, ..., ), if
FE
g_ﬁk<a17a2>"-7oém) :0, k= 1,2,...,771,

It is easily seen that these conditions form simply system of equations (7).

The analysis of the system @)



Since

B(¢i, ¢5) = B(9j, ¢s),

we have a;; = aj which means that the stiffness matrix is symmetric. Moreover it is
positive definite which means that

m

Z ai;BiB; >0

1,j=1

for any system of coefficients (1, B2, . .., Bm) # 0. In such a case the system has exactly
one solution (aq, as, ..., ay,), so there exists a uniquely defined approximate solution

Ym(T) = Z ;i ().

The construction of an approximate solution.
Example 1.

The first step is to form a uniform partition of [a, b] by choosing points
a=xg<x1 <--" <xn:bwithh:xi+1—xi:b_T“,izO,l,...,n—l.Wedeﬁnethe
basis functions as

S
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fori=1,2,3,...,n—1.
1.0+
0.8+
0.6
0.4

0.2F

0.2 0.4 0.6 0.8 1.0

Remark. There is also another way of construction of the functions ¢;(z) above. Namely,
let us take a "mother” function

¢(x):{1—|x|, 1<z <1,

0, otherwise

and let us define qﬁi(x):¢(%),i:1,2,,3,...,n—1.

8



pic. the "mother” function ¢(z)
Since functions ¢;(x) are piecewise linear, the derivatives ¢;(x), while not continuous, are
constant on the open subinterval (z;,x;41) for each j =0,1,...,n — 1. Thus we have
07 a S x S Ti-1,
1
Glw) =7,
h’
0, i1 <o <D,

Tio1 < x <y,

Ty <x < Xy,

i=1,2,3,...n—1.
Since ¢; and ¢} are nonzero only on (z;_1,x;4+1), we observe that

di(z)pj(x) =0 and qb;(m)gb;(x) =0, if |i — j| > 1.

As a consequence, linear system reduces to an n x n tridiagonal linear system with the
stiffness matrix entries a;; = 0 for |¢ — j| > 1, while the nonzero entries are as follows

b Tit1
— / p(&)B(2)? + q(@)ds(e)Pde = — / p(x)dz+

Ti 1 Tit1
(10) — (x — zi-1)’q(x)dz + 7 (zip1 — x)%q(z)dz =

Ti—1 Zj



it = | DE)6(2)6@) + a(@)oi(a)ins(z)dn =

1 Ti41 1 Ti41
~3 / p(z)dr + ﬁ/ (x — z;)(zip1 — 2)q(z)dx ~

1 h3 1 h

1
_ﬁp(l‘i—f—%)h + EQ(ZUH%)E = _EP(ZEH%) + Q(zwé)g

foreachi=1,2,....,n—2;

i = [ P ()6l(2) + 4(2)6ins ()61 2)dn =

1 Ti41 1 Ti41
~73 / p(z)dr + ﬁ/ (x — z;)(zip1 — 2)q(x)dx ~

1 1 h3 1 h
_ﬁp(xwr%)h + EQ(ZBH%)E = —EP(IL"H%) + Q($z+%>g

for each © = 1,2,3,...,n — 2. The entries f; are given by

7 f(@)(x — miq)dr + /z f(@)(zi — x)de =~

i

2

3 (FopG + 1005 ) =05 (166 + o)

A practical guide for approximate calculating the integrals above over the intervals
(x;_1,7;) and (x;,2;41): we have replaced functions p(z), ¢(z) and f(x) with their values
taken at the points z; 1 = z; — b and Tipl =T+ b and further we calculate the integrals
accurately. It is possible to use other approximate methods of integration based on the
following quadratures

1. the midpoint method:

with the error er < Ch?;

2. the Simpson method:
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/:+1 flz)dx ~ (f(l“i) +4f (%) + f(xiﬂ)) h/6

with the error er < Ch®. Constant C' > 0 depends on f only.

3. in Matlab we can use the Matlab command

Tit1
| fa)dn ~ quad(f, i 10)

where f is a handle to f.

The unknown coefficients o, s, ..., a,_1 are obtained as a solution of system and the
Rayleigh-Ritz approximation is given by

Yn(T) = Z a;¢i(x).

The error analysis for the Galerkin-Ritz method.

It can be shown that
ly(z) — yn(x)| < Ch, a <z <b.

for some constant C' independent of h. The discussion of this result goes as follows.

The boundary value problem is of our interest. We consider the bilinear form and the
load functional related to this problem defined as follows

b

B(v,w) Z/p(w)v’w’ﬂLQ(w)vwd% (f, w) Z/bfwdx

a

for any v, w € H}(a,b).
The weak solution u of the problem is defined as folows:

B(u,w) = (f,w)

for any w € H(a,b).

The variational solution u of the problem is defined as folows::
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E(u) = min E(w), for any w € H(a,b),

where

is the energy functional.

An approximate solution is constructed as follows:

1. S, C Hi(a,b) is a chosen finite dimensional subspace

2. ¢1(x), Pa(x), ..., ¢m(x) is a basis in S,

An approximate solution u, € S, is defined by the relation:

B(uh7¢) = (f7 ¢)

for any ¢ € S, or equivalently (only for the basis functions)
B(up, i) = (f, ), i=1,2,...,m.
Equivalently, we can define weak solution wu;, as the minimum of the energy functional:
E(up) = min E(¢), ¢(z) € Sp.
We define the error of approximation as the L? - norm of the difference u — wy,

b 1/2

= |z = [ — ]| = / (ul) — un(2))?d

a

Before we pass to the error analysis of the error, we provide some auxilliary facts.

Auxilliary facts.
We introduce a new norm

b 1/2

vl = /p(x)v’($)2 +q(@)v(z)’de | =+/B(v,v)

a

Fact 1. There exist constants 1,72, 73,1, 's > 0 such that

a) N||V'llz, <|lvlls < Taf|v']|z,
b) allvllz, < |vlls
¢) Ysllvllee < [lvllp < Tollv||5, where [[v|lo = max [v(z)|

for any v € H}(a,b).
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Fact 2. There exists a constant C' > 0 such that

a) |B(v, w)| < Cfv][s[|w]|5
b) B(v,v) > Cllvll5

Fact 3. Let u be a weak solution and let u;, be an approximate solution. Then
B(u — Up, (b) =0
for any ¢ € Sj,.

Proof. It follows from the definition of the weak and approximate solution that

B(u,¢) = (f,¢)
B(un, ¢) = (f,9)

for any ¢ € Sj,. Hence we obtain
B(U,Qb) —B(Uh,Qb) = B(u_uh7¢) =
Furthermore, it follows from Fact 2, a) that

[u —up||s = B(u — up, u —up) = B(u —up, (u— @) + (¢ — up)) = B(u — up, u — @)+
B(u—un, ¢ —un) = B(u — up,u— ¢) < Cllu — uy|[s|lu — ¢||,

which gives

The Cea’s lemma

l[u —un||p < Cllu—¢||5, ¢ € S
or

[l = unll5 < Cmin [ju — ¢||5

Example 1. An application of the Cea’s lemma. The choice of the S} space:

Leta=2g< 21 <29 < -+ <z, =0band

Sp =A{¢(z) € Cla,b] : () is linear for x € [z;_1,7;], =1,2,...,n, ¢(a) = ¢(b) =0. }
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fig. a function ¢(z) € Sy.

The "hat” functions ¢;(z) form the basis of S, i.e. ¢(x) = c1¢1(x) + cap2() + - - +
Cn—l¢n—1(x)-
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fig. the functions ¢;(z)
Comments. To estimate the error ||u — uy||p we first consider

in [|u — ¢|l5.

The latter one can be estimated if one takes a suitably chosen ¢(z), commonly we take the
Lagrange’s interpolant [,u
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It is given by expression



Due to the Cea’s lemma we obtain

l[u —up||p < Cmin ||lu — ¢|[p < C||u — Tyul|s.
PESH

and further we are concerned with the estimates of ||u — I,ul|p.
It is known that there exists a constant C' > 0 independent of A such that

lu(z) — Iyu(z)| < Ch* and |u/(z) — (Iyu)'(z)] < Ch
for x € (z;,2;41) on each interval (x;, x;41).

In practice, we estimate the error in L? norm:

1/2

b
errorg(h) = ||u — uplls = /(u(as) — up(z))*dx

and in the H' norm:
errors (h) = (||u — up||3 + [|u' — uj,||3)"?

equivalent to the norm ||u — us| 5.

Calculations, for approximations of integrals we use the Simpson method:

b 1 Li+1
1. ||u—uh||§:/(u—uh Z/U—Uh dx
a =0 T;

Tit1 Tit1 9
2. / (u — up)?dr = / (u(m) — (W(m — ;) + uhl)) dx ~

2 Z Up, + up, 2 h

i+l i

((u(z:) = ups)® +4 <u(xi+§) - +T) + (w(@it1) — Uh,i+1)2)g

where uyp; = up(z;), Tipl = 0.5(x; + Tig1).
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b 4 Ti4l

n—1
Lolu — w3 = /(u’ —up')?dr = Z / (u' — uj))*dw
i=0 2

a

T4l Ti41

2
2. / (u' — ) dr = / (u'(x) — w> dx =~

Z5 Ty

2 2
<(u’(:€l) _ htd T i +lh i ) +4 (u’(:c”%) _ hatl T ki Hh i ) +

Uit — uni\ "\ B
(u’(xiH) — A ’Z> ) 6

We expect the following convergence rates

errory(h) < Ch?, errorg:(h) < Ch
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