
Lecture 4

Topics

1. The Ritz-Galerkin and the finite element method for the boundary value problem for
the second order differential equations
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The Ritz-Galerkin-Rayleigh method for the problem

{
−(p(x)y′)′ + q(x)y = f(x), x ∈ (a, b)

y(a) = 0, y(b) = 0.
(1)

Assumptions: p(x) ∈ C1[a, b], p(x) ≥ p0 > 0, q(x), f(x) ∈ C[a, b], q(x) ≥ 0. Under these
assumptions the problem has a unique solution.

1. Standard (or regular, classical) solutions. The function y(x) ∈ C2[a, b] which satisfies
all the conditions in the problem above is a standard (regular) solution.

2. Weak solutions.

The introductory observation. Let

v ∈ C1[a, b], v(a) = 0, v(b) = 0 (we will write v ∈ H1
0(a, b))

Then a function y(x) ∈ C2[a, b] is a solution of (1), if and only if

(2)
∫ b

a

[−(p(x)y′)′ + q(x)y]vdx =

∫ b

a

fvdx

for every v ∈ H1
0(a, b). Since∫ b

a

−(p(x)y′)′vdx = −p(x)y′v|ba +
∫ b

a

p(x)y′v′dx =

∫ b

a

p(x)y′v′dx,

condition (2) can be replaced by

(3)
∫ b

a

p(x)y′v′ + q(x)yvdx =

∫ b

a

fvdx

This relation is a basis for the definition of a weak solution.

Definition. The function y ∈ H1
0(a, b) is a weak solution of (1) if and only if the condition

(3) holds for every v ∈ H1
0(a, b). Note that y is required to be only a C

1 regular function, so
it may not satisfy the boundary problem (1) in a classical sense.

For any v, w ∈ H1
0(a, b) we define

B(u, v) =

∫ b

a

p(x)u′v′ + q(x)uvdx, (f, v) =

∫ b

a

fudx,
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We observe that

1. B(u, v) = B(v, u)

2. B(αu1 + βu2, v) = αB(u1, v) + βB(u2, v)

3. B(u, u) > 0 for u ̸= 0.

4. (f, αv1 + βv2) = α(f, v1) + β(f, v2)

Hence B(u, v) is a bilinear form and (f, v) is a linear one. Using these forms we can define
a weak solution y ∈ H1

0(a, b) to the original problem as a function satisfying

B(y, v) = (f, v) for every v ∈ H1
0(a, b).
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3. Variational solutions.

We define the energy functional

E(u) =
1

2
B(u, u)− (f, u),

for every u ∈ H1
0(a, b).

and the variational solution of the problem

Definition. The function y ∈ H1
0(a, b) is a variational solution of (1) if and only if

E(y) = min
u∈H1

0(a,b)
E(u).

A comparison of the weak and variational solutions is given in the following theorem

Twierdzenie 1. The function y ∈ H1
0(a, b) is a variational solution if and only if it is a

weak solution to the problem (1).

Proof. First we assume that y(x) is a variational solution. Then for any v ∈ H1
0(a, b) and

t ∈ R we have y + tv ∈ H1
0 and

E(y) ≤ E(y + tv) =
1

2
B(y + tv, y + tv)− (f, y + tv) =

1

2
B(y, y)− (f, y) + t(B(y, v)− (f, v)) + t2B(v, v) =

E(y) + t(B(y, v)− (f, v)) + t2B(v, v).

Hence, we have

0 ≤ t(B(y, v)− (f, v)) + t2B(v, v) ≤ t(B(y, v)− (f, v) + tB(v, v))

Let us consider t → 0+. Then we have

B(y, v)− (f, v) ≥ −tB(v, v) with − tB(v, v) → 0.

Let us consider t → 0−. Then we have

B(y, v)− (f, v) ≤ −tB(v, v), with − tB(v, v) → 0.

Finally, we get

B(y, v) = (f, v) or
∫ b

a

p(x)y′v′ + q(x)yvdx =

∫ b

a

fvdx,
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for any v ∈ H1
0(a, b). This means that y(x) is a weak solution.

Now we assume that y(x) is a weak solution, i.e.

B(y, v)− (f, v) = 0.

Then for any w ∈ H1
0 we also have v = w − y ∈ H1

0 and

E(w) = E(y + v) =
1

2
B(y, y)− (f, y)︸ ︷︷ ︸+(B(y, v)− (f, v))︸ ︷︷ ︸+ 1

2
B(v, v)︸ ︷︷ ︸ =

E(y) + 0 +
1

2
B(v, v) ≥ E(y),

which means that the energy functional reaches its minimum at y(x). This ends the proof.
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Construction of an approximate solution.

Let Vm ⊂ H1
0 be a linear finite dimensional subspace with basis functions ϕ1(x), ϕ2(x), ...

ϕm(x). We define an approximate solution as a function

ym(x) =
m∑
i=1

αiϕi(x) ∈ Vm ⊂ H1
0(4)

such that

B(ym, vm) = (f, vm),(5)

is satisfied for any vm(x) ∈ Vm or in other words:

ym is a weak solution in Vm.

Let you compare definition of the approximate solution with defifinition of the exact one:

B(y, v) = (f, v) for every v ∈ H1
0(a, b).

Solution of an approximate problem.

Our aim is to determine coefficients α1, α2,. . . , αm. Taking in (5) as vm(x), subsequently
the basis functions ϕi(x), i = 1, 2, . . . ,m we obtain the system of the linear equations

m∑
j=1

aijαj = fi, i = 1, 2, . . . ,m(6)

where

aij = B(ϕi, ϕj) =

∫ b

a

p(x)ϕ′
i(x)ϕ

′
j(x) + q(x)ϕi(x)ϕj(x)dx,

fj = (f, ϕj) =

∫ b

a

fϕjdx.

We will write the equations above in the following matrix form
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
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
am1 am2 . . . amm



α1

α2
...

αm

 =


f1
f2
...
fm

(7)

Matrix [B(ϕi, ϕj)] is called a stiffness matrix and vector (f1, f2, . . . , fm) is called a load
vector.

Equivalently, system of equations (6) (or (7)) can be obtained also in the following way.
We observe that ym in (5) satisfies the variational condition

E(ym) = min
vm∈Vm

E(vm).(8)

Formula (8) is expressed in terms of functions ym and vm. Our aim is to express it in terms
of numbers. Since

vm(x) =
m∑
i=1

βiϕi(x)

where β1, β2,. . . , βm are some coefficients, we have

E(vm) = E(β1, β2 . . . , βm) =
1

2
B(ym, ym)− (f, ym) =

1

2

n∑
i,j=1

aijβiβj −
n∑

i=1

fiβi,

Now, variational formula (8) can be rewritten as follows

E(α1, α2, . . . , αm) = min
β1,β2,...,βm

E(β1, β2, . . . , βm)(9)

The solution of the above ekstremum problem is obtained by analytic methods. Since

∂E

∂βk

=
∂

∂βk

(
1

2

m∑
i,j=1

aijβiβj −
n∑

i=1

fiβi

)
=

m∑
j=1

akjβj − fk, k = 1, 2, . . . ,m

hence it follows that E(β1, β2, . . . , βm) reaches its minimum at (α1, α2, . . . , αm), if

∂E

∂βk

(α1, α2, . . . , αm) = 0, k = 1, 2, . . . ,m.

It is easily seen that these conditions form simply system of equations (7).

The analysis of the system (7).
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Since

B(ϕi, ϕj) = B(ϕj, ϕi),

we have aij = aji which means that the stiffness matrix is symmetric. Moreover it is
positive definite which means that

m∑
i,j=1

aijβiβj > 0

for any system of coefficients (β1, β2, . . . , βm) ̸= 0. In such a case the system (7) has exactly
one solution (α1, α2, . . . , αm), so there exists a uniquely defined approximate solution

ym(x) =
m∑
i=1

αiϕi(x).

The construction of an approximate solution.

Example 1.

The first step is to form a uniform partition of [a, b] by choosing points
a = x0 < x1 < · · · < xn = b with h = xi+1 − xi =

b−a
n
, i = 0, 1, . . . , n− 1. We define the

basis functions as

ϕi(x) =


0, a ≤ x ≤ xi−1,
1
h
(x− xi−1), xi−1 ≤ x ≤ xi,

1
h
(xi+1 − x), xi ≤ x ≤ xi+1,

0, xi+1 ≤ x ≤ b,

for i = 1, 2, 3, . . . , n− 1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Remark. There is also another way of construction of the functions ϕi(x) above. Namely,
let us take a ”mother”function

ϕ(x) =

{
1− |x|, −1 ≤ x ≤ 1,

0, otherwise

and let us define ϕi(x) = ϕ
(
x−xi

h

)
, i = 1, 2, , 3, . . . , n− 1.
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pic. the ”mother”function ϕ(x)

Since functions ϕi(x) are piecewise linear, the derivatives ϕ′
i(x), while not continuous, are

constant on the open subinterval (xj, xj+1) for each j = 0, 1, . . . , n− 1. Thus we have

ϕ′
i(x) =


0, a ≤ x ≤ xi−1,
1
h
, xi−1 ≤ x ≤ xi,

− 1
h
, xi ≤ x ≤ xi+1,

0, xi+1 ≤ x ≤ b,

i = 1, 2, 3, . . . , n− 1.

Since ϕi and ϕ′
i are nonzero only on (xi−1, xi+1), we observe that

ϕi(x)ϕj(x) ≡ 0 and ϕ′
i(x)ϕ

′
j(x) ≡ 0, if |i− j| > 1.

As a consequence, linear system (7) reduces to an n× n tridiagonal linear system with the
stiffness matrix entries aij = 0 for |i− j| > 1, while the nonzero entries are as follows

aii =

∫ b

a

p(x)ϕ′
i(x)

2 + q(x)ϕi(x)
2dx =

1

h2

∫ xi+1

xi−1

p(x)dx+

1

h2

∫ xi

xi−1

(x− xi−1)
2q(x)dx+

1

h2

∫ xi+1

xi

(xi+1 − x)2q(x)dx ≈(10)

1

h2
(p(xi− 1

2
) + p(xi+ 1

2
))h+

1

h2
(q(xi− 1

2
) + q(xi+ 1

2
))
h3

3
=(

p(xi− 1
2
) + p(xi+ 1

2
)
) 1

h
+
(
q(xi− 1

2
) + q(xi+ 1

2
)
) h

3

for each i = 1, 2, . . . , n− 1, xi− 1
2
= xi − h

2
, xi+ 1

2
= xi +

h
2
.
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ai,i+1 =

∫ b

a

p(x)ϕ′
i(x)ϕ

′
i+1(x) + q(x)ϕi(x)ϕi+1(x)dx =

− 1

h2

∫ xi+1

xi

p(x)dx+
1

h2

∫ xi+1

xi

(x− xi)(xi+1 − x)q(x)dx ≈

− 1

h2
p(xi+ 1

2
)h+

1

h2
q(xi+ 1

2
)
h3

6
= −1

h
p(xi+ 1

2
) + q(xi+ 1

2
)
h

6

for each i = 1, 2, . . . , n− 2;

ai+1,i =

∫ b

a

p(x)ϕ′
i+1(x)ϕ

′
i(x) + q(x)ϕi+1(x)ϕi(x)dx =

− 1

h2

∫ xi+1

xi

p(x)dx+
1

h2

∫ xi+1

xi

(x− xi)(xi+1 − x)q(x)dx ≈

− 1

h2
p(xi+ 1

2
)h+

1

h2
q(xi+ 1

2
)
h3

6
= −1

h
p(xi+ 1

2
) + q(xi+ 1

2
)
h

6

for each i = 1, 2, 3, . . . , n− 2. The entries fi are given by

fi =

∫ b

a

f(x)ϕi(x)dx =

1

h

∫ xi

xi−1

f(x)(x− xi−1)dx+
1

h

∫ xi+1

xi

f(x)(xi+1 − x)dx ≈

1

h

(
f(xi− 1

2
)
h2

2
+ f(xi+ 1

2
)
h2

2

)
= 0.5h

(
f(xi− 1

2
) + f(xi+ 1

2
)
)

A practical guide for approximate calculating the integrals above over the intervals
(xi−1, xi) and (xi, xi+1): we have replaced functions p(x), q(x) and f(x) with their values
taken at the points xi− 1

2
= xi − h

2
and xi+ 1

2
= xi +

h
2
and further we calculate the integrals

accurately. It is possible to use other approximate methods of integration based on the
following quadratures

1. the midpoint method:

∫ xi+1

xi

f(x)dx ≈ f

(
xi + xi+1

2

)
h

with the error er ≤ Ch3;

2. the Simpson method:
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∫ xi+1

xi

f(x)dx ≈
(
f(xi) + 4f

(
xi + xi+1

2

)
+ f(xi+1)

)
h/6

with the error er ≤ Ch5. Constant C > 0 depends on f only.

3. in Matlab we can use the Matlab command

∫ xi+1

xi

f(x)dx ≈ quad(f, xi, xi+1)

where f is a handle to f .

The unknown coefficients α1, α2, . . . , αn−1 are obtained as a solution of system (7) and the
Rayleigh-Ritz approximation is given by

yn(x) =
n−1∑
i=1

αiϕi(x).

The error analysis for the Galerkin-Ritz method.

It can be shown that

|y(x)− yn(x)| ≤ Ch, a ≤ x ≤ b.

for some constant C independent of h. The discussion of this result goes as follows.

The boundary value problem (1) is of our interest. We consider the bilinear form and the
load functional related to this problem defined as follows

B(v, w) =

b∫
a

p(x)v′w′ + q(x)vwdx, (f, w) =

b∫
a

fwdx

for any v, w ∈ H1
0(a, b).

The weak solution u of the problem is defined as folows:

B(u,w) = (f, w)

for any w ∈ H1
0(a, b).

The variational solution u of the problem is defined as folows::
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E(u) = minE(w), for any w ∈ H1
0(a, b),

where

E(w) =
1

2
B(w,w)− (f, w)

is the energy functional.

An approximate solution is constructed as follows:

1. Sh ⊆ H1
0(a, b) is a chosen finite dimensional subspace

2. ϕ1(x), ϕ2(x), . . . , ϕm(x) is a basis in Sh

An approximate solution uh ∈ Sh is defined by the relation:

B(uh, ϕ) = (f, ϕ)

for any ϕ ∈ Sh or equivalently (only for the basis functions)

B(uh, ϕi) = (f, ϕi), i = 1, 2, . . . ,m.

Equivalently, we can define weak solution uh, as the minimum of the energy functional:

E(uh) = minE(ϕ), ϕ(x) ∈ Sh.

We define the error of approximation as the L2 - norm of the difference u− uh

||u− uh||L2 = ||u− uh|| =

 b∫
a

(u(x)− uh(x))
2dx

1/2

.

Before we pass to the error analysis of the error, we provide some auxilliary facts.

Auxilliary facts.

We introduce a new norm

||v||B =

 b∫
a

p(x)v′(x)2 + q(x)v(x)2dx

1/2

=
√
B(v, v)

Fact 1. There exist constants γ1, γ2, γ3,Γ1,Γ2 > 0 such that

a) γ1||v′||L2 ≤ ||v||B ≤ Γ1||v′||L2

b) γ2||v||L2 ≤ ||v||B
c) γ3||v||∞ ≤ ||v||B ≤ Γ2||v′||B, where ||v||∞ = max |v(x)|

for any v ∈ H1
0(a, b).
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Fact 2. There exists a constant C > 0 such that

a) |B(v, w)| ≤ C||v||B||w||B
b) B(v, v) ≥ C||v||2B

Fact 3. Let u be a weak solution and let uh be an approximate solution. Then

B(u− uh, ϕ) = 0

for any ϕ ∈ Sh.

Proof. It follows from the definition of the weak and approximate solution that

B(u, ϕ) = (f, ϕ)

B(uh, ϕ) = (f, ϕ)

for any ϕ ∈ Sh. Hence we obtain

B(u, ϕ)−B(uh, ϕ) = B(u− uh, ϕ) = 0.

Furthermore, it follows from Fact 2, a) that

||u− uh||2B = B(u− uh, u− uh) = B(u− uh, (u− ϕ) + (ϕ− uh)) = B(u− uh, u− ϕ)+

B(u− uh, ϕ− uh) = B(u− uh, u− ϕ) ≤ C||u− uh||B||u− ϕ||B,

which gives

The Cea’s lemma

||u− uh||B ≤ C||u− ϕ||B, ϕ ∈ Sh

or

||u− uh||B ≤ Cmin
ϕ

||u− ϕ||B

Example 1. An application of the Cea’s lemma. The choice of the Sh space:

Let a = x0 < x1 < x2 < · · · < xn = b and

Sh = {ϕ(x) ∈ C[a, b] : ϕ(x) is linear for x ∈ [xj−1, xj], j = 1, 2, . . . , n, ϕ(a) = ϕ(b) = 0. }
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fig. a function ϕ(x) ∈ Sh.

The ”hat”functions ϕj(x) form the basis of Sh i.e. ϕ(x) = c1ϕ1(x) + c2ϕ2(x) + · · ·+
cn−1ϕn−1(x).
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fig. the functions ϕi(x)

Comments. To estimate the error ||u− uh||B we first consider

min
ϕ∈Sh

||u− ϕ||B.

The latter one can be estimated if one takes a suitably chosen ϕ(x), commonly we take the
Lagrange’s interpolant Ihu

I_h(f)

f(x)

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

It is given by expression

Ihu(x) =
n∑

i=1

u(xi)ϕi(x).
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Due to the Cea’s lemma we obtain

||u− uh||B ≤ C min
ϕ∈Sh

||u− ϕ||B ≤ C||u− Ihu||B.

and further we are concerned with the estimates of ||u− Ihu||B.
It is known that there exists a constant C > 0 independent of h such that

|u(x)− Ihu(x)| ≤ Ch2 and |u′(x)− (Ihu)
′(x)| ≤ Ch

for x ∈ (xi, xi+1) on each interval (xi, xi+1).

In practice, we estimate the error in L2 norm:

error2(h) = ||u− uh||2 =

 b∫
a

(u(x)− uh(x))
2dx

1/2

and in the H1 norm:

errorH1(h) = (||u− uh||22 + ||u′ − u′
h||22)1/2

equivalent to the norm ||u− uh||B.

Calculations, for approximations of integrals we use the Simpson method:

1. ||u− uh||22 =
b∫

a

(u− uh)
2dx =

n−1∑
i=0

xi+1∫
xi

(u− uh)
2dx

2.

xi+1∫
xi

(u− uh)
2dx =

xi+1∫
xi

(
u(x)−

(
uh,i+1 − uh,i

h
(x− xi) + uh,i

))2

dx ≈

((u(xi)− uh,i)
2 + 4

(
u(xi+ 1

2
)− uh,i+1 + uh,i

2

)2

+ (u(xi+1)− uh,i+1)
2)
h

6

where uh,i = uh(xi), xi+ 1
2
= 0.5(xi + xi+1).
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1. ||u′ − uh
′||22 =

b∫
a

(u′ − uh
′)2dx =

n−1∑
i=0

xi+1∫
xi

(u′ − u′
h)

2dx

2.

xi+1∫
xi

(u′ − u′
h)

2dx =

xi+1∫
xi

(
u′(x)− uh,i+1 − uh,i

h

)2

dx ≈

((
u′(xi)−

uh,i+1 − uh,i

h

)2

+ 4

(
u′(xi+ 1

2
)− uh,i+1 − uh,i

h

)2

+

(
u′(xi+1)−

uh,i+1 − uh,i

h

)2
)

h

6

We expect the following convergence rates

error2(h) ≤ Ch2, errorH1(h) ≤ Ch
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