Lecture 4

The finite difference methods for the hyperbolic differential equations (the wave equations).

Let us consider the following problem

0 0
(1) G =al@ng +f@t), ve(@p), te D)
where the coefficient a = a(z,t) may be nonconstant but it is assumed to be still either
positive, a(x,t) > 0 or negative, a(z,t) < 0 for all (z,t), i.e. a(x,t) has a constant sign. The
problem is completed with initial data

(2)  u(@,0) =v(z), ve (),

and depending on the sign of a(z,t) with the boundary condition

3) u(a,t) = o(t), ifa(z,t) <0
uw(B,t) =(t), ifa(z,t) >0

I. Case a(z,t) >0
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IT. Case a(z,t) <0
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Remark. In the case when a(z,t) changes its sign inside the region = € («, 3), t € (0,T) the
problem becomes more complicated and solutions may have singularities.

Example. Let

u; = au,, where a is constant

v(z) = u(x,0).

We check that the solution of this equation is given by u(x,t) = v(z + at). We see that a
special role is played by lines x + at = const, in this case it follows from this formula, that
u(z,t) is constant along those. Those lines are called the characteristics of the equation. We
find them in a parametric form (x = z(s),y = y(s)) as the solutions of the following problem

{t’(s) =1
'(s) = —a



whose solution is equal (t = s +¢(0),x = —as + x(0)), usually we take ¢(0) = 0, hence
(t =s,x + at = x(0)(= const))

I. Characteristics x+at=const, for u; = at,,, case a > 0

1 T — — T

T
\\\ — ~
0.8 —~— T~
T— T
\\ \\\
—
06 u=v T
- — . w{t)
0.4 —
—~
0.2 T~
—v(x)
0
0 0.2 0.4 0.6 08 1
X

1 T e e T
//// ///

0.8 - — i
06 _— /// P u=v (XJ"@I )

. _ s

- _—
04 )ﬁ(ﬁ/ -
///

0.2 _—

0 _ofa)

0 0.2 0.4 0.6 0.8 1
X

Remark. A similar statement holds for variable coefficient a = a(z,t), in which case the
characteristic is curved and its parametric form (¢ = ¢(s), x = z(s)) is obtained as a solution
of the system of the differential equations

t'(s)=1
2'(s) = —a(zx,t)
t(0) =0, z(0) =z

1. Characteristics for w; = a(z, t)u, + f(z,t), case a(z,t) < 0
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Discretization of the problem.

We discretize the intervals
a=zsg<<---<z,=0,h=(F—a)/n
O=toy<ti <---<tym=T, k:(T—O)/m

We define the approximate solution as a number sequence {u;;} such that w;y = v(z;),
i=0,1,...,nuy =0¢(t;),j=0,1,2,...,m and u;; =~ u(z;,t;) i =1,2,3,...,n,
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There are many schemes for constructing sequence {u;;}. We consider the following ones
1. the forward explicit scheme
2. the backward implicit scheme

3. the Crank-Nicolson scheme
We begin with a consideration of

1. the forward explicit scheme

Case a(x,t) > 0.

(4) “i’”lk_“” =aij“i“’2_“"j +fijy i=0,1,2,...,n—1,j=0,1,2,...,m—1,

where a;; = a(z;,t;). Hence we obtain

U 41 = )\ai,ju”l,j + (1 — )\aiyj)uij —{—kﬁfij, 1=0,1,2,....n—1, 5=0,1,2,... m—1,
(5) Ui,OZUi, ’U,(Tl,,]):ﬂ}]7 i:05172a"'7n71,j:071727"'7m715

where A = k/h, v; = v(z;), ¥; = ¥(t;). In the matrix form we have

UQ,j+1 1 — Xag,; Aag, j 0 - 0 uQ, j
UL,j+1 0 1 —>\a17]' )\a17j 0 ul,j
(6) = +
Un—1,5+1 0 0 0 1—)\(7,”_1,]' Un—1,j5
0 fo,j
0 f1,5
)\an—l,j ° +k 0

Un,j fnflyj



in a short form

(7) ﬁj+1 = A’ZIJ —+ )\an,l,ju@ = k’f;

Uo,0
. . - U1,0
Starting with the vector #y = ) and the value wu,, o we get subsequently the vectors
Un—-1,0
Up,1 Up,2 Up,3
) . U1 5 U1,2 5 U1,3
of the approximate values u; = . , Uy = . , U3 = _ e
Un—1,1 Un—-1,2 Up—1,3

The stability condition of the method = the CFL condition (Courant-Friedrichs-Levy
condition):

(8) )\mi?x|aij| <1 (the CFL condition)

Case a(z,t) < 0.

Wi i — Uss Wi — Uit s
(9) 'L,J+1k z]:aij i,j hz 1,5 +fl]7 i:1,2,...,n,j:O,1,2,...,m—1,
Hence we obtain

U1 = —Aaijui—1,j + (1 + Aag)uwig + kfij, i=1,2,....n, 7 =0,1,2,...,m—1,
(10) Ui 0 = Vi, U(O,j):¢j, i:1,2,...,n,j:0,1,2,...,m—1,

where A = k/h, v; = v(x;), ¢; = ¢(t;). In the matrix form we have

U j+1 1—}—)\(11,]» 0 0 0 Uy, j
(11) U2, j+1 _ —)\agyj 1+ %\ag’j O e 0 U3, j B
Un, j+1 0 0 e —)\an’j 1+ )\an,j U, j
o, fig
0 f?,j
)\ald —+ k .
0 frg

The stability method - the CFL condition ().

2. the backward implicit scheme

Case a(z,t) > 0.



(12) 1,5+ = 2 - @i j41 'L+1,]+1h 4,J+1

+fi,j+17 t=0,1,2,...,mn—-1,5=0,1,2,...,m—1,
where a;; = a(z;,t;). Hence we obtain

(13)  —Aaijt1tit1+1 + (14 Aaijr1)uije1 = wij + K fiji,
i=01,2,...m—1,j=0,1,2,...,m—1,
uio =v;, u(n,j)=1y;, i=0,1,2,...,n—1, j=0,1,2,...,m—1,

where X\ = k/h, v; = v(x;), ¥; = ¢¥(t;). In the matrix form we have

[ 1+ Xao,j+1 —Aag,j+1 0 e 0 UQ,j+1
0 L+Aa1 41 —Aarjt1 - 0 Ut,j+1
(14) : . . i =

L 0 0 0 1+ Xap—1,+1 Un—1,5+1

uo, j 0 Jo,j+1

Uy, 0 fii+1

+ Aan—1,j+1 . +k .

L Un—1,j Un,j+1 fn—l,j+1

1. Since the determinant det(A) = (1 + Aagj+1)(1 + Aayjs1) - .. (L + Aap—1 j+1) # 0, the

Uo,0
system has allways a unique solution. Starting with the vector ’ and the value
Un—1,0
U1 we solve subsequently the system of equations (]1__9 which gives the vectors of the
Uo,1 Uo,2 Uo,3

. Uy,1 Uy,2 U1,3

approximate values _ , . , _ Y
Up—1,1 Un—1,2 Un—1,3 |

2. The method is stable for h, k > 0.
3. The method is of the first order accurate.

Case a(z,t) < 0.

U1 — Uiy Ui,j+1 — Ui—1,5+1
(15) : t=aijp1— .

7 > h +fi,j+17 1=12,...,n,5=01,2,...,m—1,

Hence we obtain

(16)  Adijprti-rj41 + (1= Aagjpn)uig = i+ kfiji,
i=1,2,...m, j =012, .. m—1,
ui,O = Uy, U(O,]) :QZS], 1= 1327'”7”5 .] :07172,...,7’1’2,

where A = k/h, v; = v(z;), ¢; = ¢(t;). In the matrix form we have



1-— )\a17j+1 0 0 ‘o 0 Ul,j+1
)\a2,j+1 1-— )\a2,j+1 0 600 0 U2, 541
(17) . . . . =
L 0 0 500 Aan7j+1 1-— )\an,j-i-l Unp,j+1
Uy U0 j+1 J1+1
(CF 0 f2,5+1
. = Aaij+1 . +k ;
L Un,j 0 Jnj+1

1. Since the determinant det(A) = (1 — Aaq j+1)(1 — Aagj11) ... (1 — Aay, j+1) # 0, the system

U0,0
has alweays a unique solution. Starting with the vector ’ and the value g
Un—1,0
and solving subsequently the system of equations we get the
Uo,1 Uo,2 Uo,3
. U1,1 Uu1,2 U3
vectors of the approximate values . , . , . Y e
Un—1,1 Up—1,2 Un—1,3
2. The method is stable for h, k > 0.
3. The method is of the first order accurate.
3. The Crank-Nicolson scheme
the case a(x,t) > 0
The basic relation
(18) % — iai,ijlW‘i’ifi,ijl‘i’iaij%#’5fij7

i=0,1,2,....,n—1, j=0,1,2,...,m—1,

The matrix form of the algorithm



[ 1+3%a0,11  —gdaojpn O 0 uo,j4+1
0 1+ §Aa1,j+1 —EAa1’j+l 0 UL, 541
(19) . . i
L 0 0 0 1+ %)\an,l,j+1 Up—1,5+1
[ 1—2IXao;  Lidag,; 0 0 uo,j
0 1—3Xa1; 3Aay 0 ut,j
. : +
L 0 0 0 1-— %Aan_l,j Un—1,j
0 f0,j+%
0 Wi il
1 1;]+§
§>\an71‘j+% + k
un,]“‘r% fn—l,j-&-%
—1l(r » 1 . .
where fi,j—i—% = i(fzy + f2J+1>7 Up_1j+1 = Q(CL”—LJ + an—LJH)
the case a(z,t) <0
The basic relations
Wil = Uij _ 1 Wil = Wi—1,541 | 1 Loowpj—ui—1jy 1
(20) — - =gt t it gy ————" + S fij,
i=1,2,...,n, j=0,1,2,...,m—1,
The matrix form of the algorithm
_ L _
1-— 5)\(117j+1 0 0 0 U1,541
1 1
gAaz41 1—3Aag 1 O 0 U2 j41
(21) } : .
0 0 La, ; 1—1xa,; Upy. 7
L 2 \%n,j+1 2\%n,j+1 L Yn,j+1
[ 1+ %)\am 0 0 0 Uy, j |
—%ACLQJ 14+ %/\CLQ,]‘ 0 0 U2, j
6 0 . —l);a ; 1+1')\a ; Uy, 7
L toe 2 mn,J 2 n,J n,7
UQ,j+1 fl,j+%
0 f2 i1
Jt+ g
Aa'laj-‘r% 0 + k .
0 )
fn,J—&-%



