
4. The Fourier method for the diffusion problem


ut = α2uxx + f(x, t), x ∈ (0, l), t > 0

u(0, t) = u(l, t) = 0; t > 0

u(x, 0) = v(x), x ∈ (0, 1)

1. We first observe that the functions e−
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and the boundary condition
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is also a solution to that problem if the sequence {ak} is sufficiently fast convergent to zero.

2. We are looking for solutions of the form
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If this series is sufficiently fast convergent, then the function u(x, t) can be considered as the
solution of the problem. In order to determine the coefficients ak(t) we make the following
observations
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where the last expansion is obtained from the general formulas for the Fourier expansion series
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Now from the differential equation it follows that
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A comparison of the terms in the sums above we obtain

a′k(t) = fk(t)e
k2α2π2

l2
t, k = 1, 2, . . .(5)

Finally
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The coefficients ak(0) are retrieved from the initial condition as follows
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ak(0) = vk, k = 1, 2, 3, . . .

Remark

In practise, the integral in (7) is calculated approximately by using for example the complex
Simpson method
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Example. The Fourier method for the following diffusion problem.


ut = α2uxx, x ∈ (0, l), t > 0

ux(0, t) = u(l, t) = 0; t > 0

u(x, 0) = v(x), x ∈ (0, 1)

1. First we consider the eigenvalue problem associated with the differential equation

{
v′′(x) = λv(x)

v′(0) = v(l) = 0
(9)

In this problem we are looking for unknown nontrivial functions v(x) (the eigenfunctions) and
numbers λ (the eigenvalue).

The characteristic equation associated to this differential problem has the following form

α2z2 = λ

Respectively to possible expected values of λ we have to consider the following cases:

a) λ > 0: then the characteristic equation has two real solutions: z = ± 1
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the general solution to the differential equation has the form
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The function v(x) has to satisfy the homogeneous boundary condition v′(0) = v(l) = 0, wich
results in equations{
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This system of linear equations has only one trivial solution A = B = 0.

b) λ = 0: then the characteristic equation has only the trivial solution: z = 0 . Consequently
the general solution to the differential equation has the form

v(x) = Ax+B

The function v(x) has to satisfy the homogeneous boundary condition v′(0) = v(l) = 0, wich
results in equations{

A = 0

A · l +B = 0

This system of linear equations has only one solution A = B = 0.

c) λ < 0: then the characteristic equation has two imaginary solutions: z = ± 1
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Consequently the general solution to the differential equation has the form
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The function v(x) has to satisfy the homogeneous boundary condition v′(0) = v(l) = 0, which
results in equations
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Now if u(x, t) = eλktvk(x) then
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In this way we get the series of solutions
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We are looking for a solution of the following form
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To find unknown coefficients, we first expand u(x, 0) into the following Fourier series
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Hence it follows that ak = vk, k = 0, 1, 2, 3, . . . which gives
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