
The Fourier method for the hyperbolic differential equations.

Let us consider the wave equation as the model problem.


∂2u
∂t2

= α2 ∂2u
∂x2 + f(x, t), 0 < x < l, t > 0,

u(0, t) = 0, u(l, t) = 0,

u(x, 0) = h(x), 0 ≤ x ≤ l,
∂u
∂t
(x, 0) = g(x), 0 ≤ x ≤ l,

where f(x), g(x), h(x) are given smooth bounded functions.

1. We are looking for a solution of the form

u(x, t) =
∞∑
k=1

ak(t) sin
(
k
πx

l

)
.

The the function series
{
sin

(
k π

l
x
)}

has been chosen because each function sin
(
k π

l

)
is a

nontrivial solution of the auxilliary problem{
w′′(x) = λw(x)

w(0) = w(l) = 0.

for λ = λk = −k2 π2

l2
, k = 1, 2, 3, . . . . Moreover this is an orthogonal function series, which

means that
π∫

0

sin
(
m
π

l

)
sin

(
n
π

l
x
){

= 0, if m ̸= n

̸= 0(= l
2
), if m = n

If the sequence of coefficients {ak(t) is sufficiently fast convergent to zero, then the function
u(x, t) can be considered as the solution of the problem. In order to determine the coefficients
ak(t) we make the observations

utt(x, t) =
∞∑
k=1

a′′k(t) sin
(
k
πx

l

)
(1)

uxx(x, t) =
∞∑
k=1

−k2π2

l2
ak(t) sin

(
k
πx

l

)
(2)

f(x, t) =
∞∑
k=1

fk(t) sin
(
k
πx

l

)
(3)

where coefficients fk(t) are obtained from the general formulas for the Fourier expansion series

fk(t) =

l∫
0

f(x, t) sin(kπ
x

l
)dx/

l∫
0

sin2(kπ
x

l
)dx =

2

l

l∫
0

f(x, t) sin(kπ
x

l
)dx(4)

Now from the differential equation it follows that
∞∑
k=1

a′′k(t) sin(kπ
x

l
) =

α2

∞∑
k=1

−k2π2

l2
ak(t) sin(kπ

x

l
) +

∞∑
k=1

fk(t) sin(kπ
x

l
)



Comparing the terms in the sum above we obtain differential equations

a′′k(t) = −k2α2π2

l2
ak(t) + fk(t), k = 1, 2, . . .(5)

which have the following solutions

ak(t) = ak(0) cos

(
kαπ

l
t

)
+

l

kαπ
a′k(0) sin

(
kαπ

l
t

)
+(6)

l

kαπ

t∫
0

fk(s) sin

(
kαπ

l
(t− s)

)
ds, k = 1, 2, . . .

The coefficients ak(0) are retrieved from the initial condition as follows

h(x) =
∞∑
k=1

hk sin
(
kπ

x

l

)
,

where

hk =

l∫
0

h(x) sin
(
kπ

x

l

)
dx/

l∫
0

sin2
(
kπ

x

l

)
dx =

2

l

l∫
0

h(x) sin
(
kπ

x

l

)
dx,(7)

which gives

ak(0) = hk, k = 1, 2, 3, . . .

the coefficients a′k(0) are retrieved from the initial condition as follows

g(x) =
∞∑
k=1

gk sin
(
kπ

x

l

)
,

where

gk =

l∫
0

g(x) sin
(
kπ

x

l

)
dx/

l∫
0

sin2
(
kπ

x

l

)
dx =

2

l

l∫
0

g(x) sin
(
kπ

x

l

)
dx,(8)

which gives

a′k(0) = gk, k = 1, 2, 3, . . .

Remark

In practise, the integrals in (4), (6), (7) and (8) are calculated approximately by using for
example the complex Simpson method

l∫
0

f(s)ds ≈ 1

6
h

n∑
i=0

(
f(xi) + 4f(xi+ 1

2
) + f(xi+1)

)
(9)

where 0 = x0 ≤ x1 ≤ x2 ≤ . . . xn+1 = l, h = (xi+1 − xi)/n, xi+ 1
2
= xi+xi+1

2
.


