The finite difference methods for the hyperbolic differential equations.

Let us consider the wave equation as the model problem.

Bu = o284 4 f(a,t), O0<z <, t>0,
u(0,t) =0, u(l,t) =0,
u(z,0) = h(z), 0 <z <,

5 (@,0)=g(2), 0<x <],

where f(x), g(x), h(z) are given smooth bounded functions.

Such equations describe the wave phenomena like the movement of the string or the
propagation of the sound wave in gases.
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1. The forward explicit Euler’s scheme produces the sequence of approximate values for the
solution by relations

urtt =20+ UM o2 ur,—20r+U0r,

k'2 - h2 _{_on’

where fI' = f(z;,t,). If A= a%, we can write this difference equation in the vector form
(1) IU™ ' —=2IU™ + IU™™ = NAU™ + kK f"

where U™ = (U, UY, ..., U" ], similarly U""! and U, f* = [fr, fo ..., f* ],

m

and [ is identity matrix of the size (m — 1) x (m — 1). After a modification

(3) U™ =21+ NAU" - TU" + k2"



This equation holds for each n = 1,2,.... The boundary conditions give
(4) Uy =U, =0,
for each n =1,2,3,..., and the initial condition implies that

(5) U= h(:)

(2

foreachi=1,2,...,m — 1.
Writing in a matrix form we obtain

[ Ut 2(1 — A2) 2 0 0 ... 0 U

Uptt A2 201—X2) A2 0 ... 0 v

(6) g = : : o : : -
| untl | 0 0 0 0 X 2(1-2)? ur_,
[ ur T l
L_
U, ) 2
+k

L Uph m—1

Equations (or (6))) imply that the (n + 1)-st time step requires values from n-th and

(n — 1)-st time steps. This produces a minor starting problem since the values for n = 0 are
given by equation (B]), but the values for n = 1, which are needed in equation (3)) to compute
U? must be obtained from the initial velocity condition

ou
— = <z </

The first approach is to replace (Ou/0t) by a forward-difference approximation, which results in
() Ui =U; + kg(x:)

A better approximation to u(z;,t1) can be rather easily obtained particularly when the second
derivative of f at x; can be determined.

a?k?
(8) U} =U +kg(z;) + 5 h"(x;).
This is an approximation with the local truncation error O(k?) for each
i=1,2,...,m—1.1f h € C*0, 1] but A" (x;) is not readily available we can use an approximation
A2 A2
(9) Ui =(1—X)h(z:) + 5 M@is1) + S h(zia) + kg(za),
to approximate U} for each i = 1,2,...,m — 1.

2. The backward implicit Euler’s scheme produces the sequence of approximate values for
the solution by relations

n— n n n+1 n+1 n+1
Uz' L — 2Uz + Uz +1 — a2 Uz—+1 - 2Uz * + U'L++1 + f'n—&-l
kQ h2 2




If A= a%, we can write the difference equation as

Un—l U™ 4+ Un+1 — )\2AUTL+1 + k,an-i—l
or

(10) (I = NAU™ =20" — U 4 K2

This equation holds for each n = 1,2,.... The boundary conditions give

Uy =U; =0,

for each n =1,2,3, ..., and the initial condition implies that

U = h(x;)

for each i = 1,2,...,m — 1. Vector [U{,U},..., UL ] is calculated using one of the formula

@. (@) or ().

Writing relation in a matrix form we obtain

I O B B
U’IL UTL U’n— n
)y B| 2 | =2 F |-| 7 |+2| 7
Unth Ut U fath
where
142)\2 )2 0o 0 ... 0
5 X2 142X —X 0 ... 0
0 0 0 0 —\2 1+2)2

3. The Cranck-Nicolson scheme , as the stable second order accurate method. It can be
obtained informally in the following way

n+1 n n—1 n n n

L2 = a’~ 2 +
n+1 n n— n n n
Ut 20y + UL G UR 20T U
k2 = h2 +fj

Taking the average of the above equalities we obtain

Uptt —2up+ Ut 1 (UR 207+ U UM =207+ U
2 3 72 * 2 *

n+i
f] 27
nt3 1/ n+1
where f; 2 = 3(f7 + f77).

After some simple transformations we obtain

1 1
Un+1 _ 2Un + Un—l — §>\ZAUTL + 5)\2AUn+1 + k,an—i-%



or finally

1 1
(12) (1 - 5)\214) Untt = <2] + 5)\214) Ut —pynl 4 k:2fn+%

n+1 __ n+1 __
Uttt = Ut =,

where A is the earlier introduced matrix in . Introducing the matrices

1+X —3X 0 0 ... 0
1 1
Bo1 Lo, —3A7 14X =3 0 0
2 : : : :
0 0 0 —3A7 14N
2—X 2N 0 0 0
Coorybaan | B 2N A0 !
2 : : : S :
0 0 0 ... A% 2

2

the Cranck-Nicolson scheme can be written in the matrix form

] ntd
Ut up upt I
wArll n n—1 n+s
U, U; Uy 2| fo 2
B : =C : - : +k
n+1 n n—1 L1
Umfl Umfl Umfl fnJr?
=



