
The finite difference methods for the hyperbolic differential equations.

Let us consider the wave equation as the model problem.


∂2u
∂t2

= α2 ∂2u
∂x2 + f(x, t), 0 < x < l, t > 0,

u(0, t) = 0, u(l, t) = 0,

u(x, 0) = h(x), 0 ≤ x ≤ l,
∂u
∂t
(x, 0) = g(x), 0 ≤ x ≤ l,

where f(x), g(x), h(x) are given smooth bounded functions.

Such equations describe the wave phenomena like the movement of the string or the
propagation of the sound wave in gases.

1. The forward explicit Euler’s scheme produces the sequence of approximate values for the
solution by relations
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where fn
i = f(xi, tn). If λ = α k

h
, we can write this difference equation in the vector form
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and I is identity matrix of the size (m− 1)× (m− 1). After a modification

Un+1 = (2I + λ2A)Un − IUn−1 + k2fn.(3)



This equation holds for each n = 1, 2, . . . . The boundary conditions give

Un
0 = Un

m = 0,(4)

for each n = 1, 2, 3, . . . , and the initial condition implies that

U0
i = h(xi)(5)

for each i = 1, 2, . . . ,m− 1.
Writing (3) in a matrix form we obtain
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Equations (3) (or (6)) imply that the (n+ 1)-st time step requires values from n-th and
(n− 1)-st time steps. This produces a minor starting problem since the values for n = 0 are
given by equation (5), but the values for n = 1, which are needed in equation (3) to compute
U2
i must be obtained from the initial velocity condition

∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ l.

The first approach is to replace (∂u/∂t) by a forward-difference approximation, which results in

U1
i = U0

i + kg(xi)(7)

A better approximation to u(xi, t1) can be rather easily obtained particularly when the second
derivative of f at xi can be determined.

U1
i = U0

i + kg(xi) +
α2k2

2
h′′(xi).(8)

This is an approximation with the local truncation error O(k2) for each
i = 1, 2, . . . ,m−1. If h ∈ C4[0, 1] but h′′(xi) is not readily available we can use an approximation
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to approximate U1
i for each i = 1, 2, . . . ,m− 1.

2. The backward implicit Euler’s scheme produces the sequence of approximate values for
the solution by relations
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If λ = α k
h
, we can write the difference equation as

Un−1 − 2Un + Un+1 = λ2AUn+1 + k2fn+1

or
(I − λ2A)Un+1 = 2Un − Un−1 + k2fn+1.(10)

This equation holds for each n = 1, 2, . . . . The boundary conditions give

Un
0 = Un

m = 0,

for each n = 1, 2, 3, . . . , and the initial condition implies that

U0
i = h(xi)

for each i = 1, 2, . . . ,m− 1. Vector [U1
1 , U

1
2 , . . . , U

1
m−1] is calculated using one of the formula

(7), (8) or (9).
Writing relation (10) in a matrix form we obtain
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3. The Cranck-Nicolson scheme , as the stable second order accurate method. It can be
obtained informally in the following way
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Taking the average of the above equalities we obtain
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After some simple transformations we obtain
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or finally(
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where A is the earlier introduced matrix in (2). Introducing the matrices
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the Cranck-Nicolson scheme can be written in the matrix form
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