Exercise 1. For what values of parameters a, b, c, is the function

$$f(x) = \begin{cases} a & \text{for } x < -1\\ b & \text{for } -1 \le x < 1\\ c & \text{for } x \ge 1 \end{cases}$$

the density of some random variable X?

Exercise 2. The density of random variable X is given by

$$f(x) = \begin{cases} \alpha \sqrt{x} & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Compute α , then E[X] and $D^2[X]$.

Exercise 3. Random variable X has a distribution with density $f(x) = \alpha x$ for $x \in [0, \pi]$ and f(x) = 0 otherwise. Find α . For random variable $Y = \cos X$, calculate E[Y] without finding the distribution of variable Y.

Exercise 4. A statistics teaching assistant typically arrives at the classroom two minutes before the scheduled start time. Assuming the arrival time is a normally distributed random variable with $\sigma = 2$ minutes, what is the probability that this assistant will be late for class?

Exercise 5. Let random variables X and Y be independent. Let X have an exponential distribution with parameter $\lambda = 1/5$ and Y have a normal distribution $\mathcal{N}(-1,2)$. Find the variance of the random variable Z = 2X - 3Y - 2.

Exercise 6. Random variables X_i , i = 1, 2, 3, 4 are independent and have the same distribution $\mathcal{N}(1,1)$. Compute

$$P(|X_1 + X_2 + X_3 + X_4| > 6).$$

Exercise 7. Let X be uniformly distributed on the interval [-1,2]. Find the distribution function and the density of the random variable $Y = X^2$.

Exercise 8. Random variable X has an exponential distribution with expected value 1. Find the density of random variable $Y = \ln X$.

Exercise 9. A string of Christmas lights consists of n bulbs connected in series. It is known that the bulbs fail independently and the operating time of each bulb has an exponential distribution with parameter λ . Find the distribution of operating time T of the string of lights.

Exercise 10. A room is lit by two independently operating light bulbs. The light durations of bulbs X and Y have an exponential distribution with parameter λ . Let T denote the time when the last working bulb fails. Determine

- a) the cumulative distribution function of variable T,
- b) the density function of variable T,
- c) $\mathrm{E}\left[T\right],$
- d) $D^2[T]$.